

# State of Washington **DEPARTMENT OF FISH AND WILDLIFE**

Mailing Address: 600 Capitol Way N Olympia, WA 98501-1091 (360) 902-2222, TDD (360) 902-2207 Main Office Location: Natural Resources Building 1111 Washington Street SE Olympia, WA

May 31, 2006

Kelly McLain Aquatic Pesticide Program Supplemental Department of Ecology P.O. Box 47600 Olympia, Washington 98504-7600 NPDES Permit WA0041009 Annual Report

Dear Ms. McLain:

Enclosed are Washington Department of Fish and Wildlife's Post-Treatment Discharge Monitoring Reports for Rat Lake and its connecting waters - Reflection (Mouse) Pond, Green Lake, and Spectacle Lake (Okanogan County), and Burke Lake and Quincy Lake (Grant County), treated with rotenone in the spring or fall of 2005, along with all other pertinent documentation as mandated by the reporting requirement under S3.A of NPDES Waste Discharge Individual Permit Number WA0041009.

Also enclosed is a copy of the amended FSEIS for the lakes proposed for treatment in the fall of 2005 and the Spring of 2006, including all SEPA comments, results and decisions, as well as the 2006-2007 Lake and Stream Rehabilitation Proposal list.

Please feel free to contact me at 360-902-2711 or email anderjda@dfw.wa.gov with any questions.

Sincerely,

Jon. Anderson

Resident Native Fisheries Manager

Enclosures

cc: Jim Uehara, WDFW Olympia

### Post – Rehabilitation Treatment Discharge Monitoring Report

### 2005

#### **POST-TREATMENT REPORTS:**

RAT LAKE – REFLECTION (MOUSE) POND (OKANOGAN CO.) GREEN LAKE (OKANOGAN CO.) SPECTACLE LAKE (OKANOGAN CO.) BURKE LAKE (GRANT CO.) QUINCY LAKE (GRANT CO.)

#### **SEPA FSEIS ADDENDUM**

SEPA ADDENDUM 31 AUGUST 2005 SEPA ADDENDUM 19 SEPTEMBER 2005 2005 LOWLAND LAKE PROPOSALS LAKE MANAGEMENT PLANS PRE-REHABILITATION PLANS

#### POST TREATMENT DISCHARGE MONITORING REPORT

1. Lake Name: Rat, including connecting waters (Mouse Pond)

2. County: Okanogan

3. Section: 22 Township: 31 Range: 24E

4. **Date(s) of Treatment:** May 10-11, 2005

- 5. Purpose of Treatment: Rat Lake is located north of Brewster, Washington and provides an opportunity for fishermen in lower Okanogan County to have a production trout lake in close proximity to town. Rat Lake is managed as a year round fishery for rainbow and brown trout, which includes a winter bait season and summer catch and release season. The recent illegal introduction of brown bullheads to the lake had severely compromised the trout fishery. The presence of the bullheads created a competitive environment, so that fingerling trout plants had little or no chance of survival to yearlings. The only remaining means to restore the lake to trout only production was to chemically remove the bullhead population and replant with rainbow and brown trout juveniles.
- 6. Name of Licensed Applicator: Jeff Korth
- 7. Lake Description: Surface Acres: 76 Volume: 3,103 Acre Feet:

Maximum Depth: 71 Average Depth: 41

8. Stream Description: Width: N/A, Length: N/A

Flow Rate of Stream/Outlet (cu. ft. per sec.): N/A

Volume and Weight of Water Treated (gallons, pounds): 8,438,074,784 lbs.

- 9. Name of Fish Toxicant Product Used: Rotenone Fish Toxicant Powder, Prenfish Fish Toxicant Liquid
- **10. Description of Treatment Method(s):** Powder and liquid both applied by pumper boats, which mixes chemical with water prior to broadcasting into lake
- 11. Quantity of Fish Toxicant used (pounds and/or gallons): 16,775 lbs of powder and 31 gals of liquid
- **12.** Concentration of rotenone in formulated Rotenone product: 7.7% in powder and 5.0% in liquid
- 13. Concentration of active rotenone in water (ppm): 3.0 ppm

14. Water conditions/quality: We are notifying the Department of Ecology, under S3.E of Non-Compliance by WDFW of the monitoring requirement of S3.A.14. The water conditions were collected in Rat Lake on 10 May 2005, the day of the treatment, but the field data were rendered unreadable. We discovered this discrepancy on 15 May 2006, and took the water quality samples on 17 May 2006 with the following results:

| Depth (m) | Temperature °C | pН   | DO   |
|-----------|----------------|------|------|
| 0.8       | 18.91          | 8.81 | 6.32 |
| 1.5       | 15.84          | 8.53 | 5.85 |
| 2.7       | 12.09          | 8.51 | 6.31 |
| 4.5       | 10.86          | 8.13 | 5.18 |
| 6.3       | 9.51           | 7.82 | 3.61 |
| 9.1       | 6.56           | 7.61 | 2.22 |

- 15. Detoxification of rotenone treated water (if required): Description of detoxification methods/equipment; potassium permanganate application rate (pounds per hour); flow rate of stream/outlet (cu. ft. per sec.); estimate of average concentration (ppm): N/A
- 16. Description of lake inlets(s)/outlet(s) and any temporary water control measures (if required): A portion of the inlet (Whitestone Creek) was treated with liquid rotenone, which then flowed into the connecting waters (Mouse Pond) and down into Rat Lake, which has no outlet.
- 17. Period of Toxicity (duration of water quality reduction): 4-6weeks
- **18. Eradicated fish species:** brown bullheads, black crappie, smallmouth bass, eastern brook trout, rainbow trout
- 19. Results of pre and post treatment monitoring: Prior to the treatment, the lake was sampled for various parameters including temperature, pH, and zooplankton. Post sampling included VOC and Semi-VOC both within 24 hours of treatment and 4 weeks post-treatment.
- 20. Impact on non-target organisms: None observed
- 21. Brief description of treatment/detoxification and other comments: The treatment began at 0900 on May 10, 2005 and was completed by the next day when the airboat was used to treat the shallow areas. Treatment consisted of 1.5 ppm the first day and 1.5 ppm the second day. Both days it was cool and overcast with the wind picking up in the afternoon to aid in mixing the chemical. There was a small inlet stream entering the upper end of Rat Lake (Whitestone Creek), which was treated with liquid rotenone, allowed to mix with the connecting waters (Mouse

Pond) and then flow into Rat Lake, which had no outlet. Brown bullheads began surfacing the first day, but were still breathing due to the lower treatment dosage. By the end of the next day, thousands of brown bullheads along with a few hundred smallmouth bass and black crappies, and less than fifty trout were washed up along the shoreline, a result of the second day dosage (3 ppm total). There were very few yearling trout from the previous year's plant indicating the necessity of the chemical treatment to remove the bullheads and reduce competition with trout fingerlings. A bioassay with 5 rainbow trout was conducted at 6 weeks and all fish survived, indicating that the lake had detoxified. During July-Sept of 2005, there were 12,000 rainbow and 4,000 brown trout planted into Rat Lake and 1,000 triploid brook and 500 tiger trout planted into the upper connecting waters (Mouse Pond).

- 22. Copy of the amended FSEIS for lakes/streams treated during the reporting period including all SEPA comments, results and decisions
- 23. List of lakes/streams proposed for treatment during the upcoming year.

### **ESN NORTHWEST**

### INVOICE

ESN Northwest

Tax ID #91-1510006

Phone: (360) 459-4670; Fax: (360) 459-3432

INVOICE # S50513-1 INVOICE DATE May 17, 2005 **CLIENT JOB#** 

**BILL TO:** 

WA Dept. of Fish & Wildlife

600 Capitol Way North Olympia, WA 98501

ATTN:

Jim Uehara

(Bob Jateff, Project Manager)

PROJECT:

Rat Lake Rehabilitation

Washington

| DATE | QUANTITY | DESCRIPTION  | UNIT COST    | TOTAL    |
|------|----------|--------------|--------------|----------|
|      |          |              |              |          |
| 5/13 | 1        | 8260 - water | \$110.00     | \$110.00 |
| 5/17 | 1 1      | 8270 - water | \$270.00     | \$270.00 |
|      |          |              |              |          |
|      | ,        | ·            |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          |              |              |          |
|      |          | Tota         | I Amount Due | \$380.00 |

TERMS: NET 30 DAYS

PLEASE SEND REMITTANCE TO THE ADDRESS BELOW

ESN Northwest 800 Sleater-Kinney SE, PMB #262 Lacey, WA 98503-1127

ESN Job Number: Client: Client Job Name:

S50513-1 WDFW RAT LAKE REHABILITATION

| 8260, μg/L                                    |             | MTH BLK  | LCS S    | SAMPLE 1 | MS       | MSD      | RPL |
|-----------------------------------------------|-------------|----------|----------|----------|----------|----------|-----|
| Matrix                                        | Water       | Water    | Water    | Water    | Water    | Water    |     |
|                                               | Reporting   |          |          |          |          |          |     |
| Date analyzed                                 | Limits      | 05/13/05 | 05/13/05 | 05/13/05 | 05/13/05 | 05/13/05 |     |
| Dichlorodifluoromethane                       | 1.0         | nd       |          | nd       |          | •        |     |
| Chloromethane                                 | 1.0         | nd       |          | nd       |          |          |     |
| Vinyl chloride                                | 0.2         | nd       |          | nd       |          |          |     |
| Bromomethane                                  | 1.0         | nd       |          | nd       |          |          |     |
| Chloroethane                                  | 1.0         | nd       |          | nd       |          |          |     |
| Trichlorofluoromethane                        | 1.0         | nd       |          | nd       |          |          |     |
| Acetone                                       | 10.0        | nd       |          | nd       |          | •        |     |
| 1,1-Dichloroethene                            | 1.0         | nd       | 85%      | nd       | 92%      | 91%      | 19  |
| Methylene chloride                            | 10.0        | nd       |          | nd       |          |          |     |
| Methyl-t-butyl ether (MTBE)                   | 1.0         | nd       |          | nd       |          |          |     |
| trans-1,2-Dichloroethene                      | 1.0         | nd<br>*  |          | nd       |          |          |     |
| 1,1-Dichloroethane                            | 1.0         | nd       |          | nd       |          |          |     |
| 2-Butanone (MEK)<br>cis-1,2-Dichloroethene    | 10.0<br>1.0 | nd<br>nd |          | nd       |          |          |     |
| 2,2-Dichloropropane                           | 1.0         | nd       |          | nd       |          |          |     |
| Chloroform                                    | 1.0         | nd       |          | nd<br>nd |          |          |     |
| Bromochloromethane                            | 1.0         | nd       |          | nd       |          |          |     |
| 1,1,1-Trichloroethane                         | 1.0         | nd       |          | nd       |          |          |     |
| 1,2-Dichloroethane                            | 1.0         | nd       |          | nd       |          |          |     |
| 1,1-Dichloropropene                           | 1.0         | nd       |          | nd       |          |          |     |
| Carbon tetrachloride                          | 1.0         | nd       |          | nd       |          |          |     |
| Benzene                                       | 1.0         | nd       | 94%      | nd       | 99%      | 102%     | 3%  |
| Trichloroethene (TCE)                         | 1.0         | nd       | 90%      | nd       | 94%      | 98%      | 4%  |
| 1,2-Dichloropropane                           | 1.0         | nd       | 00,0     | nd       | 0170     | 0070     | 77  |
| Dibromomethane                                | 1.0         | nd       |          | nd       |          |          |     |
| Bromodichloromethane                          | 1.0         | nd       |          | nd       |          |          |     |
| 4-Methyl-2-pentanone                          | 1.0         | nd       |          | nd       |          |          |     |
| cis-1,3-Dichloropropene                       | 1.0         | nd       |          | nd       |          |          |     |
| Toluene                                       | 1.0         | nd       | 93%      | 1.0      | 99%      | 102%     | 3%  |
| trans-1,3-Dichloropropene                     | 1.0         | nd       |          | nd       |          |          |     |
| 1,1,2-Trichloroethane                         | 1.0         | nd       |          | nd       |          |          |     |
| 2-Hexanone                                    | 1.0         | nd       |          | nd       |          |          |     |
| 1,3-Dichloropropane                           | 1.0         | nd       |          | nd       |          |          |     |
| Dibromochloromethane                          | 1.0         | nd       |          | nd       |          |          |     |
| Tetrachloroethene (PCE)                       | 1.0         | nd       |          | nd       |          |          |     |
| 1,2-Dibromoethane (EDB)(*)                    | 0.10        | nd       |          | nd       |          |          |     |
| Chlorobenzene                                 | 1.0         | nd       | 93%      | nd       | 100%     | 104%     | 4%  |
| 1,1,1,2-Tetrachloroethane                     | 1.0         | nd       |          | nd       |          |          |     |
| Ethylbenzene                                  | 1.0         | nd       |          | nd       |          |          |     |
| Xylenes                                       | 1.0         | nd       |          | nd       |          |          |     |
| Styrene                                       | 1.0         | nd       |          | nd       |          |          |     |
| Bromoform                                     | 1.0         | nd       |          | nd       |          |          |     |
| 1,1,2,2-Tetrachloroethane<br>Isopropylbenzene | 1.0<br>1.0  | nd<br>   |          | nd       |          |          |     |
| 1,2,3-Trichloropropane                        | 1.0         | nd       |          | nd       |          |          |     |
| Bromobenzene                                  | 1.0         | nd       |          | nd       |          |          |     |
| n-Propylbenzene                               | 1.0         | nd<br>nd |          | nd<br>nd |          |          |     |
| 2-Chlorotoluene                               | 1.0         | nd       |          | nd       |          |          |     |
| 4-Chlorotoluene                               | 1.0         | nd       |          | nd<br>nd |          |          |     |
| 1,3,5-Trimethylbenzene                        | 1.0         | nd       |          | nd       |          |          |     |
| tro,o-rrimetry,berizene<br>tert-Butylbenzene  | 1.0         | nd       |          | nd       | •        |          |     |
| 1,2,4-Trimethylbenzene                        | 1.0         | nd       |          | nd       |          |          |     |
| sec-Bulylbenzene                              | 1.0         | nd       |          | nd       |          |          |     |
| 1,3-Dichlorobenzene                           | 1.0         | nd       |          | nd       |          |          |     |
| 1,4-Dichlorobenzene                           | 1.0         | nd       |          | nd       |          |          |     |
| sopropyltoluene                               | 1.0         | nd       |          | nd       |          |          |     |
| 1,2-Dichlorobenzene                           | 1.0         | nd       |          | nd       |          |          |     |
| n-Butylbenzene                                | 1.0         | nd       |          | nd       |          |          |     |
| 1,2-Dibromo-3-Chloropropane                   | 1.0         | nd       |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene                        | 1.0         | nd       |          | nd       |          | •        |     |
| Vaphthalene                                   | 1.0         | nd       |          | nd       |          |          |     |
| -lexachloro-1,3-butadiene                     | 1.0         | nd       |          | nd       |          |          |     |
| I,2,3-Trichlorobenzene                        | 1.0         | nd       |          | nd       |          |          |     |

<sup>\*-</sup>instrument detection limits

ESN Job Number:

S50513-1

Client:

Client Job Name:

WDFW RAT LAKE REHABILITATION

#### Analytical Results

| 8260, μg/L            |           | MTH BLK  | LCS S    | SAMPLE 1 | MS       | MSD      | RPD |
|-----------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                | Water     | Water    | Water    | Water    | Water    | Water    |     |
|                       | Reporting |          |          |          |          |          |     |
| Date analyzed         | Limits    | 05/13/05 | 05/13/05 | 05/13/05 | 05/13/05 | 05/13/05 |     |
|                       |           | •        |          |          |          |          |     |
| Surrogate recoveries: |           |          |          |          |          |          |     |
| Dibromofluoromethane  |           | 99%      | 100%     | 99%      | 100%     | .100%    |     |
| Toluene-d8            |           | 101%     | 100%     | 100%     | 101%     | 99%      |     |
| 4-Bromofluorobenzene  |           | 98%      | 98%      | 100%     | 99%      | 101%     |     |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
J - estimated quantitation, below listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

ESN Job Number:

S50513-1

Client:

WDFW

Client Job Name:

RAT LAKE REHABILITATION

| 8270, μg/L                    |           | MTH BLK  | LCS      | SAMPLE 3 | MS       | MSD      | RPD |
|-------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                        | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted                | Reporting | 05/17/05 |          | 05/17/05 | 05/17/05 | 05/17/05 |     |
| Date analyzed                 | Limits    | 05/17/05 | 05/17/05 | 05/17/05 | 05/17/05 | 05/17/05 |     |
| Duridina                      | 2.0       |          |          |          | Λ.       |          |     |
| Pyridine<br>Aniline           | 2.0       | nd<br>nd |          | nd       |          |          |     |
| Phenol                        | 2.0       | nd<br>   |          | nd ·     |          |          |     |
| 2-Chlorophenol                | 2.0       | nd<br>nd |          | nd       |          |          |     |
| Bis (2-chloroethyl) ether     | 2.0       | nd<br>nd |          | nd<br>   |          |          |     |
| 1,3-Dichlorobenzene           | 2.0       |          |          | nd<br>   |          |          |     |
| 1,4-Dichlorobenzene           | 2.0       | nd<br>nd | 87%      | nd       | 4050/    | 4050/    |     |
| 1,2-Dichlorobenzene           | 2.0       | nd<br>nd | 0776     | nd<br>nd | 105%     | 105%     |     |
| Benzyl alcohol                | 2.0       | nd<br>nd |          | nd       |          |          |     |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd       |          |          |     |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |          | nd       |          |          |     |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |          | nd       |          |          |     |
| Hexacholorethane              | 2.0       | nd<br>nd |          | nd       |          |          |     |
| N-Nitroso-di-n-propylamine    | 2.0       | nd<br>nd |          | nd<br>nd |          |          |     |
| Nitrobenzene                  | 2.0       | nd       |          | nd       |          |          |     |
| Isophorone                    | 2.0       | nd       |          | nd       |          |          |     |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd       |          |          |     |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd       |          |          |     |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd       |          |          |     |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |          | nd       |          |          |     |
| 2,4-Dichlorophenol            | 10.0      | nd       |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd       |          |          |     |
| Naphthalene                   | 2.0       | nd       |          | nd       |          |          |     |
| 4-Chloroaniline               | 10.0      | nd       |          | nd       |          |          |     |
| Hexachlorobutadiene           | 2.0       | nd       | 106%     | nd       | 110%     | 119%     |     |
| 4-Chloro-3-methylphenol       | 10.0      | nd       | 10070    | nd       | 11070    | 11070    |     |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd       |          |          |     |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd       |          |          |     |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd       |          |          |     |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd       |          |          |     |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd       |          |          |     |
| 2-Nitroaniline                | 10.0      | nd       |          | nd       |          |          |     |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | nd       |          |          |     |
| Dimethylphthalate             | 2.0       | nd       |          | nd       |          |          |     |
| Acenaphthylene                | 0.2       | nd       |          | nd       |          |          |     |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd       |          |          |     |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | nd       |          | •        |     |
| 1,2-Dinitrobenzene            | 2.0       | nd       |          | nd       |          |          |     |
| Acenaphthene                  | 0.2       | nd       | 98%      | nd       | 103%     | 110%     |     |
| 3-Nitroaniline                | 10.0      | nd       | 0070     | nd       | .0070    | . 1070   |     |
| Dibenzofuran                  | 2.0       | nd       |          | nd       |          |          |     |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          | nd       |          |          |     |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd       |          | nd       |          |          |     |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | nd       |          |          |     |
| 2,4-Dinitrophenol             | 10.0      | nd       |          | nd<br>nd |          |          |     |
| Fluorene                      | 0.2       | nd       |          | nd       | -        |          |     |

ESN Job Number:

S50513-1

Client:

WDFW

Client Job Name:

RAT LAKE REHABILITATION

Analytical Results

| 8270, μg/L                   |           | MTH BLK  | LCS      | SAMPLE 3 | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted               | Reporting | 05/17/05 |          | 05/17/05 | 05/17/05 | 05/17/05 |     |
| Date analyzed                | Limits    | 05/17/05 | 05/17/05 | 05/17/05 | 05/17/05 | 05/17/05 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | √ nd     | 115%     | nd       | 110%     | 117%     |     |
| Azobenzene                   | 2.0       | nd       |          | nd       |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |          |     |
| Pentachlorophenol            | 10.0      | nd       | •        | nd       |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | · nd     |          |          |     |
| Anthracene                   | 0.2       | nd       |          | nd       |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |          |     |
| Fluoranthene                 | 0.2       | nd       | 107%     | nd       | 114%     | 120%     |     |
| Pyrene                       | 0.2       | nd       |          | nd       |          |          |     |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       |          |          |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |          |     |
| Chrysene                     | 0.2       | nd       | •        | nd       |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | 2.4      |          | nd       |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 100%     | nd       | 111%     | 112%     |     |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(k)fluoranthene         | . 0.2     | nd       |          | nd       |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 99%      | nd       | 105%     | 111%     |     |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       |          |          |     |
| Surrogate recoveries         |           |          |          |          |          |          |     |
| Nitrobenzene-d5              |           | 30%      | 107%     | 30%      | 31%      | 29%      |     |
| 2-Fluorobiphenyl             |           | 127%     | 122%     | 112%     | 117%     | 120%     |     |
| 4-Terphenyl-d14              |           | 128%     | 127%     | 115%     | 120%     | 124%     |     |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flurophenol: 10-112 %

Phenol - d5: 10-85 %

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35%

### **ESN NORTHWEST**

### INVOICE

ESN Northwest

Tax ID #91-1510006

Phone: (360) 459-4670; Fax: (360) 459-3432

**INVOICE#** 

S50624-4

**INVOICE DATE** 

**CLIENT JOB#** June 29, 2005

**BILL TO:** 

WA Dept. of Fish & Wildlife 600 Capitol Way North

Olympia, WA 98501

ATTN:

Jim Uehara

(Bob Jateff, Project Manager)

PROJECT:

Rat Lake Rehabilitation

Washington

| DATE         |          | ·                            |                      |                      |
|--------------|----------|------------------------------|----------------------|----------------------|
| DATE         | QUANTITY | DESCRIPTION                  | UNIT COST            | TOTAL                |
| 6/27<br>6/29 | 1 1      | 8260 - water<br>8270 - water | \$110.00<br>\$270.00 | \$110.00<br>\$270.00 |
|              | <u> </u> |                              |                      |                      |
|              |          | Total Amou                   | ınt Due              | \$380.00             |

**TERMS: NET 30 DAYS** 

PLEASE SEND REMITTANCE TO THE ADDRESS BELOW

**ESN Northwest** 1210 Eastside Street SE, Suite 200 Olympia, WA 98501

ESN Job Number: Client: Client Job Name;

S50624-4 WASHINGTON DEPARTMENT OF FISH AND WILDLIFE RAT LAKE REHABILITATION

| 8260, µg/L                                 |           | MTH BLK  | LCS      | WDFW     | MS       | MSD      | RPD       |
|--------------------------------------------|-----------|----------|----------|----------|----------|----------|-----------|
| Matrix                                     | Water     | Water    | Water    | Water    | Water    | Water    | IVER      |
|                                            | Reporting | 114(0)   | 774(0)   | 140101   | 1 40(0)  | YYOUGI   |           |
| Date analyzed                              | Limits    | 06/27/05 | 06/27/05 | 06/27/05 | 06/27/05 | 06/27/05 |           |
|                                            |           |          |          |          |          |          | ********* |
| Dichlorodifluoromethane                    | 1.0       | nd       |          | nd       |          |          |           |
| Chloromethane                              | 1.0       | nd       |          | nd       |          |          |           |
| Vinyl chloride                             | 0.2       | nd       |          | nd       |          |          |           |
| Bromomethane                               | 1.0       | nd       |          | nd       |          |          |           |
| Chloroethane                               | 1.0       | nd       |          | nd       |          |          |           |
| Trichlorofluoromethane                     | 1.0       | nd       |          | nd       |          |          |           |
| Acetone                                    | 10.0      | nd       |          | nd       |          |          |           |
| 1,1-Dichloroethene                         | 1.0       | nd       | 91%      | nd       | 95%      | 84%      | 12%       |
| Methylene chloride                         | 10.0      | nd       |          | nd       |          |          |           |
| Methyl-t-butyl ether (MTBE)                | 1.0       | nd       |          | nd       |          |          |           |
| trans-1,2-Dichloroethene                   | 1.0       | nd       |          | nd       |          |          |           |
| 1,1-Dichloroethane                         | 1.0       | nd       |          | nd       |          |          |           |
| 2-Butanone (MEK)                           | 10.0      | nd       |          | nd       |          |          |           |
| cis-1,2-Dichloroethene                     | 1.0       | nd       |          | nd       |          |          |           |
| 2,2-Dichloropropane                        | 1.0       | nd       |          | nd       |          |          |           |
| Chloroform                                 | 1.0       | nd       |          | nd       |          |          |           |
| Bromochloromethane                         | 1.0       | nd       |          | nd       |          |          |           |
| 1,1,1-Trichloroethane                      | 1.0       | nd       |          | nd       |          |          |           |
| 1,2-Dichloroethane                         | 1.0       | nd       |          | nd       |          |          |           |
| 1,1-Dichloropropene                        | 1.0       | nd       |          | nd       |          |          |           |
| Carbon tetrachloride                       | 1.0       | nd       |          | nd       |          |          |           |
| Benzene                                    | 1.0       | nd       | 104%     | nd       | 108%     | 95%      | 13%       |
| Trichloroethene (TCE)                      | 1.0       | nd       | 101%     | nd       | 106%     | 92%      | 14%       |
| 1,2-Dichloropropane                        | 1.0       | nd       |          | nd       |          |          |           |
| Dibromomethane                             | 1.0       | nd       |          | nd       |          |          |           |
| Bromodichloromethane                       | 1.0       | nd       |          | nd       |          |          |           |
| 4-Methyl-2-pentanone                       | 1.0       | nd       |          | nd       |          |          |           |
| cis-1,3-Dichloropropene                    | 1.0       | nd       | 40004    | nd       |          |          |           |
| Toluene                                    | 1.0       | nd       | 102%     | nd       | 107%     | 93%      | 14%       |
| trans-1,3-Dichloropropene                  | 1.0       | nd       |          | nd       |          |          |           |
| 1,1,2-Trichloroethane                      | 1.0       | nd       |          | nd       |          |          |           |
| 2-Hexanone                                 | 1.0       | nd       |          | nd       |          |          |           |
| 1,3-Dichloropropane                        | 1.0       | nd       |          | nd       |          |          |           |
| Dibromochloromethane                       | 1.0       | nd       |          | nd       |          |          |           |
| Tetrachloroethene (PCE)                    | 1.0       | nd       |          | nd       |          |          |           |
| 1,2-Dibromoethane (EDB)(*) Chlorobenzene   | 0.10      | nd       | 4000/    | . nd     | 40004    | 0501     | 4004      |
|                                            | 1.0       | nd<br>   | 103%     | nd       | 108%     | 95%      | 13%       |
| 1,1,1,2-Tetrachloroethane                  | 1.0       | nd       |          | nd       |          |          |           |
| Ethylbenzene                               | 1.0       | nd       |          | nd       |          |          |           |
| Xylenes                                    | 1.0       | nd       |          | nd       |          |          |           |
| Styrene                                    | 1.0       | nd       |          | nd<br>1  |          |          |           |
| Bromoform                                  | 1.0       | nd       |          | nd       |          |          |           |
| 1,1,2,2-Tetrachloroethane                  | 1.0       | nd       |          | nd       |          |          |           |
| Isopropylbenzene                           | 1.0       | nd       |          | nd       |          |          |           |
| 1,2,3-Trichloropropane<br>Bromobenzene     | 1.0       | nd       |          | nd       |          |          |           |
|                                            | 1.0       | nd       |          | nd       |          |          |           |
| n-Propylbenzene                            | 1.0       | nd       |          | nd       |          |          |           |
| 2-Chlorotoluene                            | 1.0       | nd       |          | nd       |          |          |           |
| 4-Chlorotoluene                            | 1.0       | nd       |          | nd       |          |          |           |
| 1,3,5-Trimethylbenzene                     | 1.0       | nd       |          | nd       |          |          |           |
| lert-Butylbenzene                          | 1.0       | nd       |          | nd       |          |          |           |
| 1,2,4-Trimethylbenzene                     | 1.0       | nd       |          | nd       |          |          |           |
| sec-Butylbenzene                           | 1.0       | nd       |          | nd       |          |          |           |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | 1.0       | nd       |          | nd       |          |          |           |
|                                            | 1.0       | nd       |          | nd       | •        |          |           |
| sopropyltoluene                            | 1.0       | nd       |          | nd       |          |          |           |
| 1,2-Dichlorobenzene                        | 1.0       | nd       |          | nd       |          |          |           |
| 1-Butylbenzene                             | 1.0       | nd       |          | nd       |          |          |           |
| 1,2-Dibromo-3-Chloropropane                | 1.0       | nd       |          | nd       |          |          |           |
| 1,2,4-Trichlorobenzene                     | 1.0       | nd       |          | nd       |          |          |           |
| Naphthalene                                | 1.0       | nd       |          | nd       |          |          |           |
| -lexachloro-1,3-butadiene                  | 1.0       | nd       |          | nd       |          |          |           |
| 1,2,3-Trichlorobenzene                     | 1.0       | nd       |          | nd       |          |          |           |

<sup>\*-</sup>instrument detection limits

ESN Job Number:

Client: Client Job Name:

S50624-4 WASHINGTON DEPARTMENT OF FISH AND WILDLIFE RAT LAKE REHABILITATION

| 8260, μg/L            |           | MTH BLK  | LCS      | WDFW     | MS       | MSD      | RPD |
|-----------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                | Water     | Water    | Water    | Water    | Water    | Water    |     |
|                       | Reporting |          |          |          |          |          |     |
| Date analyzed         | Limits    | 06/27/05 | 06/27/05 | 06/27/05 | 06/27/05 | 06/27/05 |     |
|                       |           |          |          | •        | ,        |          |     |
| Surrogate recoveries: |           |          |          |          |          |          |     |
| Dibromofluoromethane  |           | 96%      | 99%      | 99%      | 98%      | 96%      |     |
| Toluene-d8            |           | 97%      | 97%      | 98%      | 99%      | 98%      |     |
| 4-Bromofluorobenzene  |           | 101%     | 99%      | 99%      | 98%      | 98%      |     |

Data Qualifiers and Analytical Comments
nd - not detected at listed reporting limits
J - estimated quantitation, below listed reporting limits
Acceptable Recovery limits: 65% TO 135%
Acceptable RPD limit: 35%

ESN Job Number:

S50624-4

Client:

WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

Client Job Name:

RAT LAKE REHABILITATION

| 8270, μg/L                                      |            | MTH BLK   | LCS      | WDFW     | MS       | MSD      | RPD |
|-------------------------------------------------|------------|-----------|----------|----------|----------|----------|-----|
| Matrix                                          | Water      | Water     | Water    | Water    | Water    | Water    |     |
| Date extracted                                  | Reporting  | 06/29/05  |          | 06/29/05 | 06/29/05 | 06/29/05 |     |
| Date analyzed                                   | Limits     | 06/29/05  | 06/29/05 | 06/29/05 | 06/29/05 | 06/29/05 |     |
| Pyridine                                        | 2.0        |           |          |          |          |          |     |
| Aniline                                         | 2.0        | nd<br>= d |          | nd<br>!  |          |          |     |
| Phenol                                          | 2.0        | nd<br>    |          | nd       |          |          |     |
| 2-Chlorophenol                                  | 2.0        | nd        |          | nd       |          |          |     |
| Bis (2-chloroethyl) ether                       | 2.0        | nd<br>    |          | nd       |          |          |     |
| 1,3-Dichlorobenzene                             | 2.0        | nd<br>    |          | nd       |          |          |     |
| 1,4-Dichlorobenzene                             | 2.0        | nd<br>    | 070/     | nd       | 2001     |          |     |
| 1,2-Dichlorobenzene                             | 2.0<br>2.0 | nd<br>    | 67%      | nd       | 80%      | 81%      | 1%  |
| Benzyl alcohol                                  |            | nd<br>1   |          | , nd     |          |          |     |
| 2-Methylphenol (o-cresol)                       | 2.0        | nd        |          | nd       |          |          |     |
| Bis (2-chloroisopropyl) ether                   | 2.0        | nd        |          | nd       |          |          |     |
| 3,4-Methylphenol (m,p-cresol)                   | 10.0       | nd        |          | nd       |          |          |     |
| Hexacholorethane                                | 2.0        | nd<br>'   |          | nd       |          |          |     |
|                                                 | 2.0        | nd        |          | nd       |          |          |     |
| N-Nitroso-di-n-propylamine<br>Nitrobenzene      | 2.0        | nd        |          | nd       |          |          |     |
|                                                 | 2.0        | nd        |          | nd       |          |          |     |
| Isophorone                                      | 2.0        | nd<br>!   |          | nd       |          |          |     |
| 2-Nitrophenol                                   | 10.0       | nd        |          | nd       |          |          |     |
| 4-Nitrophenol                                   | 10.0       | nd        |          | nd       |          |          |     |
| 2,4-Dimethylphenol Bis (2-chloroethoxy) methane | 2.0        | nd        |          | nd       |          |          |     |
| 2,4-Dichlorophenol                              | 2.0        | nd        |          | nd       |          |          |     |
| •                                               | 10.0       | nd        |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene                          | 2.0        | nd        | •        | nd       |          |          |     |
| Naphthalene<br>4-Chloroaniline                  | 2.0        | nd        |          | nd       |          |          |     |
|                                                 | 10.0       | nd        | 40404    | nd       |          |          |     |
| Hexachlorobutadiene                             | 2.0        | nd        | 101%     | nd       | 120%     | 125%     | 4%  |
| 4-Chloro-3-methylphenol                         | 10.0       | nd        |          | nd       |          |          |     |
| 2-Methylnapthalene                              | 2.0        | nd        |          | nd       |          |          |     |
| 1-Methylnapthalene                              | 2.0        | nd        |          | nd       |          |          |     |
| Hexachlorocyclopentadiene                       | 2.0        | nd        |          | nd       |          |          |     |
| 2,4,6-Trichlorophenol                           | 10.0       | nd        |          | nd       |          |          |     |
| 2,4,5-Trichlorophenol                           | 10.0       | nd        |          | nd       |          |          |     |
| 2-Chloronaphthalene                             | 2.0        | nd        |          | nd       |          |          |     |
| 2-Nitroaniline                                  | 10.0       | nd        |          | nd       |          |          |     |
| 1,4-Dinitrobenzene                              | 10.0       | nd        |          | nd       |          |          |     |
| Dimethylphthalate                               | 2.0        | nd        |          | nd       |          |          |     |
| Acenaphthylene                                  | 0.2        | nd        |          | nd       |          |          |     |
| 1,3-Dinotrobenzene                              | 10.0       | nd        |          | nd       |          |          |     |
| 2,6-Dinitrotoluene                              | 2.0        | nd        |          | nd       |          |          |     |
| 1,2-Dinitrobenzene                              | 2.0        | nd        |          | nd       |          |          |     |
| Acenaphthene                                    | 0.2        | nd        | 96%      | nd       | 117%     | 122%     | 4%  |
| 3-Nitroaniline                                  | 10.0       | nd        |          | nd       |          |          |     |
| Dibenzofuran                                    | 2.0        | nd        |          | nd       |          |          |     |
| 2,4-Dinitrotoluene                              | 2.0        | nd        |          | nd       |          |          |     |
| 2,3,4,6-Tetrachlorophenol                       | 2.0        | nd        |          | nd       |          |          |     |
| 2,3,5,6-Tetrachlorophenol                       | 2.0        | nd        |          | nd       |          |          |     |
| 2,4-Dinitrophenol                               | 10.0       | nd        |          | nd       |          |          |     |
| Fluorene                                        | 0.2        | nd        |          | nd       |          |          |     |

ESN Job Number:

S50624-4

Client:

WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

Client Job Name:

RAT LAKE REHABILITATION

#### **Analytical Results**

| 8270, μg/L                   |           | MTH BLK  | LCS      | WDFW     | MS       | MSD       | RPD |
|------------------------------|-----------|----------|----------|----------|----------|-----------|-----|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water     |     |
| Date extracted               | Reporting | 06/29/05 |          | 06/29/05 | 06/29/05 | 06/29/05  |     |
| Date analyzed                | Limits    | 06/29/05 | 06/29/05 | 06/29/05 | 06/29/05 | 06/29/05  |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |           |     |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |           |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          |           |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       |          |           |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 107%     | nd       | 120%     | 125%      | 4%  |
| Azobenzene                   | 2.0       | nd       |          | nd       |          | .2070     | 170 |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |           |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |           |     |
| Pentachlorophenol            | 10.0      | nd       |          | nd       |          |           |     |
| Phenanthrene                 | 0.2       | nd       |          | nd       |          |           |     |
| Anthracene                   | 0.2       | nd       |          | nd       |          |           |     |
| Carbazole                    | 2.0       | nd       |          | nd       |          |           |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |           |     |
| Fluoranthene                 | 0.2       | nd       | 106%     | nd       | 127%     | 138%      | 8%  |
| Pyrene                       | 0.2       | nd       |          | nd       |          | , , , , , |     |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       |          |           |     |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       |          |           |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |           |     |
| Chrysene                     | 0.2       | nd       |          | nd       |          |           |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |           |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 89%      | nd       | 112%     | 116%      | 4%  |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |           |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd       |          |           |     |
| Benzo(a)pyrene               | 0.2       | nd       | 92%      | nd       | 111%     | 118%      | 6%  |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |           |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |           |     |
| ndeno(1,2,3-cd)pyrene        | 0.2       | nd       | e.       | nd       |          |           |     |
| Surrogate recoveries         |           |          |          |          |          |           |     |
| Nitrobenzene-d5              |           | 34%      | 70%      | 29%      | 25%      | 24%       |     |
| 2-Fluorobiphenyl             |           | 122%     | 101%     | 125%     | 126%     | 130%      |     |
| 2,4,6-Tribromophenol         |           | 85%      | 78%      | 73%      | 82%      | 84%       |     |
| 1-Terphenyl-d14              |           | 128%     | 102%     | 128%     | 132%     | 141%      |     |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:

2,4,6- tribromophenol: 29-159% Nitrobenzene - d5: 20-120 %

2-Flurobiphenyl: 50-150%

p-Terphenyl-d14: 50-150%

Acceptable RPD limit: 35%

#### POST TREATMENT DISCHARGE MONITORING REPORT

1. Lake Name: Big Green

2. County: Okanogan

3. Section: 12-13 Township: 34N Range: 25E

4. Date(s) of Treatment: Oct 12, 2005

- 5. Purpose of Treatment: Big Green Lake is located west of the town of Omak, Washington and provides an opportunity for fishermen near the Omak/Okanogan area to have a quality trout lake in close proximity to town. Big Green Lake is managed as a winter bait fishery Dec-Mar and as a catch and release fishery from Apr-Nov. The presence of the largemouth bass had created a competitive environment, so that fingerling trout plants had little or no chance of survival to yearlings. The only remaining means to restore the lake to trout only production was to chemically remove the bass population and replant with rainbow trout juveniles.
- 6. Name of Licensed Applicator: Jeff Korth
- 7. Lake Description: Surface Acres: 49 Volume: 882 Acre Feet:

Maximum Depth: 40 Average Depth: 18

8. Stream Description: Width: N/A, Length: N/A

Flow Rate of Stream/Outlet (cu. ft. per sec.): N/A

Volume and Weight of Water Treated (gallons, pounds): 2,398,447,296 lbs.

- 9. Name of Fish Toxicant Product Used: Rotenone Fish Toxicant Powder, Prenfish Fish Toxicant Liquid
- 10. **Description of Treatment Method(s):** Powder and liquid both applied by pumper boats, which mixes chemical with water prior to broadcasting into lake
- 11. Quantity of Fish Toxicant used (pounds and/or gallons): 1,815 lbs of powder and 10 gals of liquid
- 12. Concentration of rotenone in formulated Rotenone product: 6.7% in powder and 5.0% in liquid
- 13. Concentration of active rotenone in water (ppm): 1.0 ppm

14. Water conditions/quality: Water sampling done within 24hrs pre-treatment:

| Depth (m) | Temperature © | р <b>Н</b> | DO   |
|-----------|---------------|------------|------|
| 0.9       | 13.6          | 8.53       | 6.73 |
| 2.5       | 13.57         | 8.59       | 6.64 |
| 5.1       | 13.19         | 8.56       | 6.46 |
| 7.0       | 13.06         | 8.57       | 6.43 |
| 10.1      | 13.01         | 8.58       | 6.04 |

- 15. Detoxification of rotenone treated water (if required): Description of detoxification methods/equipment; potassium permanganate application rate (pounds per hour); flow rate of stream/outlet (cu. ft. per sec.); estimate of average concentration (ppm): N/A
- 16. Description of lake inlets(s)/outlet(s) and any temporary water control measures (if required): N/A
- 17. Period of Toxicity (duration of water quality reduction): 4-6weeks
- 18. Eradicated fish species: largemouth bass, rainbow trout
- 19. Results of pre and post treatment monitoring: Prior to the treatment, the lake was sampled for various parameters including temperature, pH, and zooplankton. Post sampling included VOC and Semi-VOC both within 24 hours of treatment and 4 weeks post-treatment.
- 20. Impact on non-target organisms: None observed
- 21. Brief description of treatment/detoxification and other comments: The treatment began at 0900 on Oct 12, 2005 and was completed the same day. There was some airboat time needed to cover the shallow water areas at both ends of the lake. The day was cool and overcast with the wind picking up in the afternoon to aid in mixing the chemical. Largemouth bass began surfacing almost immediately and by the next day were scattered all along the shoreline. There were very few yearling trout from the previous year's plant indicating the necessity of the chemical treatment to remove the bass and reduce competition with trout fingerlings. A bioassay with 5 rainbow trout was conducted at 6 weeks and all fish survived, indicating that the lake had detoxified. During Apr-May of 2006, there will be 1,000 catchable and 12,000 fingerling rainbow trout replanted in the lake.
- 22. Copy of the amended FSEIS for lakes/streams treated during the reporting period including all SEPA comments, results and decisions
- 23. List of lakes/streams proposed for treatment during the upcoming year.

### **ESN NORTHWEST**

### **INVOICE**

ESN Northwest

Tax ID #91-1510006

Phone: (360) 459-4670; Fax: (360) 459-3432

INVOICE # S51017-2 INVOICE DATE October 19, 2005 **CLIENT JOB#** 

BILL TO:

WA Dept. of Fish & Wildlife

600 Capitol Way North Olympia, WA 98501

ATTN:

Jim Uehara

(Bob Jateff, Project Manager)

PROJECT:

Big Green Lake Rehabilitation

Washington

| DATE           | QUANTITY | DESCRIPTION                  | UNIT COST            | TOTAL                |
|----------------|----------|------------------------------|----------------------|----------------------|
| 10/19<br>10/17 | 1        | 8260 - water<br>8270 - water | \$110.00<br>\$270.00 | \$110.00<br>\$270.00 |
|                |          |                              |                      |                      |
|                |          | Total An                     | ount Due             | \$380.00             |

TERMS: NET 30 DAYS

PLEASE SEND REMITTANCE TO THE ADDRESS BELOW

ESN Northwest 1210 Eastside Street SE, Suite 200 Olympia, WA 98501

ESN Job Number: Client; Client Job Name;

S51017-2 WA. DEPT. OF FISH AND WILDLIFE BIG GREEN LAKE REHABILITATION

| Matrix                                           | Water      | MTH BLK<br>Water | LCS<br>Water | 2        | MS       |          | RP   |
|--------------------------------------------------|------------|------------------|--------------|----------|----------|----------|------|
|                                                  | Reporting  | vvater           | vvater       | Water    | Water    | Water    |      |
| Date analyzed                                    | Limits     | 10/19/05         | 10/19/05     | 10/19/05 | 10110105 | 101122   |      |
|                                                  |            |                  | 10/10/00     | 10/19/00 | 10/19/05 | 10/19/05 |      |
| Dichlorodifluoromethane                          | 1.0        | nd               |              | nd       |          |          |      |
| Chloromethane                                    | 1.0        | nd               |              | nd       |          |          |      |
| Vinyl chloride                                   | 0.2        | nd               |              | nd       |          |          |      |
| Bromomethane                                     | 1.0        | nd               |              | nd       |          |          |      |
| Chloroethane                                     | 1.0        | nd               |              | nd       |          |          |      |
| Trichlorofluoromethane                           | 1.0        | nd               |              | nd       | •        |          |      |
| Acetone                                          | 10.0       | nd               |              | nd       |          |          |      |
| 1,1-Dichloroethene                               | 1.0        | nd               | 93%          | nd       | 95%      | 88%      | 8%   |
| Methylene chloride                               | 10.0       | nd               |              | nd       |          |          | •    |
| Methyl-t-butyl ether (MTBE)                      | 1.0        | nd               |              | ·nd      |          |          |      |
| trans-1,2-Dichloroethene                         | 1.0        | nd               |              | nd       |          |          |      |
| 1,1-Dichloroethane                               | 1.0        | nd               | •            | nd       |          |          |      |
| 2-Butanone (MEK)<br>cis-1,2-Dichloroethene       | 10.0       | nd               |              | nd       |          |          |      |
|                                                  | 1.0        | nd               |              | nd       |          |          |      |
| 2,2-Dichloropropane<br>Chloroform                | 1.0        | nd               |              | nd       |          |          |      |
| Bromochioromethane                               | 1.0        | nd               |              | nd       |          |          |      |
| 1,1,1-Trichloroethane                            | 1.0        | nd               |              | nd       |          |          |      |
| 1,2-Dichloroethane                               | 1.0        | nd               |              | nď       |          |          | •    |
| 1,1-Dichloropropene                              | 1.0        | nd               |              | nd       |          |          |      |
| Carbon tetrachloride                             | 1.0<br>1.0 | nd               |              | nd       |          |          |      |
| Benzene                                          | 1.0        | nd               |              | nd       |          |          |      |
| Trichloroethene (TCE)                            | 1.0        | nd               | 116%         | nđ       | 115%     | 109%     | 5%   |
| 1,2-Dichloropropane                              | 1.0        | nd               | 105%         | nd       | 104%     | 99%      | 5%   |
| Dibromomethane                                   | 1.0        | nd<br>nd         |              | nd       |          |          |      |
| Bromodichloromethane                             | 1.0        | nd               |              | nd<br>t  |          |          |      |
| 1-Methyl-2-pentanone                             | 1.0        | nd               |              | nd       |          |          |      |
| cis-1,3-Dichloropropene                          | 1.0        | nd               | •            | nd       |          |          |      |
| Toluene                                          | 1.0        | nd               | 118%         | nd<br>nd | 4400     |          |      |
| rans-1,3-Dichloropropene                         | 1.0        | nd               | 11070        | nd       | 116%     | 109%     | 6%   |
| ,1,2-Trichloroethane                             | 1.0        | nd               |              | nd       |          |          |      |
| !-Hexanone                                       | 1.0        | nd               |              | nd       |          |          |      |
| ,3-Dichloropropane                               | 1.0        | nd               |              | nd       |          |          |      |
| Dibromochloromethane                             | 1.0        | nd               |              | nd       |          |          |      |
| etrachloroethene (PCE)                           | 1.0        | nd               |              | nd       |          |          |      |
| ,2-Dibromoethane (EDB)(*)                        | 0.10       | . nd             |              | nd       |          |          |      |
| hlorobenzene                                     | 1.0        | nd               | 112%         | nd       | 111%     | 105%     | 6%   |
| 1,1,2-Tetrachloroethane                          | 1.0        | nd               |              | nd       | ******   | 10070    | 0.70 |
| Ihylbenzene                                      | 1.0        | nd               |              | nd       |          |          |      |
| ylenes                                           | 1.0        | nd               |              | nd       |          |          |      |
| tyrene                                           | 1.0        | nd               |              | nd       |          |          |      |
| romoform                                         | 1.0        | nd               |              | nd       |          |          |      |
| 1,2,2-Tetrachloroethane                          | 1.0        | nd               |              | nd       |          |          |      |
| opropylbenzene                                   | 1.0        | nd               |              | nd       |          |          |      |
| 2,3-Trichloropropane                             | . 1.0      | nd               |              | nd       |          |          |      |
| omobenzene                                       | 1.0        | nd               |              | nd       |          |          |      |
| Propylbenzene<br>Chlorotolyana                   | 1.0        | nd               |              | nd       |          |          |      |
| Chlorotoluene<br>Chlorotoluene                   | 1.0        | nd               |              | nd       |          |          |      |
| 3,5-Trimethylbenzene                             | 1.0        | nd               |              | nd       |          |          |      |
| t-Butylbenzene                                   | 1.0        | nd               |              | nd       |          |          |      |
| 2,4-Trimethylbenzene                             | 1.0        | nd               |              | nd       |          |          |      |
| c-Butylbenzene                                   | 1.0        | nd               |              | nd       |          |          |      |
| -Dichlorobenzene                                 | 1.0        | nd               |              | nd       |          |          |      |
| -Dichlorobenzene                                 | 1.0        | nd               |              | nd       |          |          |      |
| propyltoluene                                    | 1.0        | nd               |              | nd       |          |          |      |
| -Dichlorobenzene                                 | 1.0        | nd               |              | nd       |          |          |      |
| Putylbenzene<br>Butylbenzene                     | 1.0        | nd               |              | nd       |          |          |      |
| -Dibromo-3-Chloropropane                         | 1.0        | nd               |              | nd       |          |          |      |
| -Dibioino-3-Chioropropane<br>,4-Trichlorobenzene | 1.0        | nd               |              | nd       |          |          |      |
| phthalene                                        | . 1.0      | nd               |              | nd       |          |          |      |
| kachloro-1,3-butadiene                           | 1.0        | nd               |              | 2.2      |          |          |      |
| ,3-Trichlorobenzene                              | 1.0        | nd               |              | nd       |          |          |      |
| strument detection limits                        | 1.0        | nd               |              | nd       |          |          |      |

ESN Job Number:

S51017-2

Client:

WA. DEPT. OF FISH AND WILDLIFE BIG GREEN LAKE REHABILITATION

Client Job Name:

| 8260, µg/L            |           | MTH BLK  | LCS      | 2        | MS       | MSD R    | RPD |
|-----------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                | Water     | Water    | Water    | Water    | Water    | Water    |     |
|                       | Reporting |          |          |          |          |          |     |
| Date analyzed         | Limits    | 10/19/05 | 10/19/05 | 10/19/05 | 10/19/05 | 10/19/05 |     |
|                       |           |          |          |          |          |          |     |
| Surrogate recoveries: |           |          |          |          |          |          |     |
| Dibromofluoromethane  |           | 105%     | 104%     | 102%     | 104%     | 102%     |     |
| Toluene-d8            |           | 99%      | 100%     | 100%     | 100%     | 101%     |     |
| 4-Bromofluorobenzene  |           | 113%     | 110%     | 108%     | 110%     | 110%     |     |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

J - estimated quantitation, below listed reporting limits

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

ESN Job Number:

S51017-2

Client: Client Job Name: WA. DEPT. OF FISH AND WILDLIFE BIG GREEN LAKE REHABILITATION

| Date extracted Reporting 10/17/05 10/17/05 10/17/05 10/17/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8270, μg/L                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MTH BLK  | LCS      | . 1      | MS       | MSD      | RPD |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-----|
| Limits   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05   10/17/05      | Matrix                                  | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water    | Water    | Water    | Water    | Water    |     |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          | 10/17/05 |     |
| Anilline 2.0 nd nd nd Phenol 2.0 nd nd nd Bis (2-chlorophenol 2.0 nd nd nd 1.3-Dichlorobenzene 2.0 nd nd nd 1.3-Dichlorobenzene 2.0 nd nd nd 2.1-Dichlorobenzene 2.0 nd nd nd 2.2-Dichlorobenzene 2.0 nd nd nd Phenol (0-cresol) 2.0 nd nd nd Nd Phenol 2.0 nd Nd Phenol  | Date analyzed                           | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/17/05 | 10/17/05 | 10/17/05 | 10/17/05 | 10/17/05 |     |
| Anilline 2.0 nd nd nd Phenol 2.0 nd nd nd Bis (2-chlorophenol 2.0 nd nd nd 1.3-Dichlorobenzene 2.0 nd nd nd 1.3-Dichlorobenzene 2.0 nd nd nd 2.1-Dichlorobenzene 2.0 nd nd nd 2.2-Dichlorobenzene 2.0 nd nd nd Phenol (0-cresol) 2.0 nd nd nd Nd Phenol 2.0 nd Nd Phenol  | Pyridina                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,        |          |          |          |          |     |
| Phenol   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 2-Chlorophenol 2.0 nd nd nd 1,3-Dichlorobenzene 2.0 nd nd nd 1,3-Dichlorobenzene 2.0 nd nd nd 1,4-Dichlorobenzene 2.0 nd nd nd 1,4-Dichlorobenzene 2.0 nd nd nd nd nd 1,4-Dichlorobenzene 2.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          | •   |
| Bis (2-chloroethyl) ether 2.0 nd nd nd 1,4-Dichlorobenzene 2.0 nd 90% nd 97% 88% 1,2-Dichlorobenzene 2.0 nd nd nd 1,4-Dichlorobenzene 2.0 nd nd nd 2-Methylphenol (o-cresol) 2.0 nd nd nd 2-Methylphenol (o-cresol) 2.0 nd nd nd Bis (2-chloroisporopyl) ether 10.0 nd nd nd N-Mitroso-di-propyl ether 2.0 nd nd nd N-Mitroso-di-propylamine 2.0 nd N-Mit |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 1,3-Dichlorobenzene 2.0 nd 90% nd 97% 88% 1,2-Dichlorobenzene 2.0 nd 90% nd 97% 88% 1,2-Dichlorobenzene 2.0 nd nd Benzyl alcohol 2.0 nd nd nd Benzyl alcohol 2.0 nd nd nd 3,4-Methylphenol (o-cresol) 2.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 1,4-Dichlorobenzene 2.0 nd 90% nd 97% 88% 1,2-Dichlorobenzene 2.0 nd nd nd Benzyl alcohol 2.0 nd nd 2-Methylphenol (o-cresol) 2.0 nd nd nd 2-Methylphenol (o-cresol) 2.0 nd nd nd Bis (2-chloroisopropyl) ether 10.0 nd nd nd Nethylphenol (m.p-cresol) 2.0 nd nd nd Nethylphenol 2.4-Dimethylphenol 2.0 nd nd nd Nethylphenol 2.4-Dimethylphenol 2.0 nd nd nd Nethylphenol 2.4-Dimethylphenol 3.0 nd nd nd Nethylphenol 3.2 nd Nethylphenol 3.2 nd nd nd Nethylphenol 3.3 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 1,2-Dichlorobenzene 2.0 nd nd nd Benzyl alcohol (-cresol) 2.0 nd nd nd Nd Schlorobenzene 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| Benzyl alcohol 2.0 nd nd nd 2.4Methylphenol (o-cresol) 2.0 nd nd nd Bis (2-chloroisopropyl) ether 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 90%      |          | 97%      | 88%      | 10% |
| 2-Methylphenol (o-cresol) 2.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| Bis (2-chloroisopropyl) ether 10.0 nd nd 3,4-Methylphenol (m.p-cresal) 2.0 nd nd nd Hexacholorethane 2.0 nd nd nd N-Nitroso-di-n-propylamine 2.0 nd nd nd N-Nitroso-di-n-propylamine 2.0 nd nd Nitrobenzene 2.0 nd nd nd Sophorone 2.0 nd nd nd N-Nitrospenol 10.0 nd nd nd N-Nitrospenol 10.0 nd ND NITROSPENOL 10.0 ND NIT | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | nd       |          |          |     |
| 3,4-Methylphenol (m.p-cresol) 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| Hexacholorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | nd       |          |          |     |
| N-Nitroso-di-n-propylamine 2.0 nd nd nd Nitrobenzene 2.0 nd nd nd Isophorone 2.0 nd nd nd Isophorone 2.0 nd nd nd 2-Nitrophenol 10.0 nd nd nd nd 1.2.4-Dinitrophenol 10.0 nd nd nd 1.2.4-Trichlorophenol 10.0 nd nd nd 1.2.4-Trichlorophenol 10.0 nd nd Naphthalene 2.0 nd nd nd 1.2.4-Trichlorobenzene 2.0 nd nd nd 1.2.4-Trichlorobenzene 2.0 nd nd 10.2 nd Naphthalene 2.0 nd nd 10.2 nd nd 10.2 Naphthalene 2.0 nd nd 10.2 Naphthalene 2.0 nd nd 10.2 Naphthalene 2.0 nd nd Naphthalene 2.0 nd Napht | - · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd       |          | nd       |          |          |     |
| Nitrobenzene 2.0 nd nd sophorone 2.0 nd nd sophorone 2.0 nd nd 2-Nitrophenol 10.0 nd nd 2-Nitrophenol 10.0 nd nd nd 2-Nitrophenol 10.0 nd nd nd 2-4-Dinethylphenol 2.0 nd nd nd 2-4-Dinethylphenol 10.0 nd nd nd 2-4-Dinethylphenol 10.0 nd nd nd 1,2,4-Dinethylphenol 10.0 nd nd nd 1,2,4-Dinethylphenol 10.0 nd nd nd 1,2,4-Tirchlorophenol 10.0 nd nd nd 1,2,4-Tirchlorophenol 10.0 nd nd nd 1-2-Methylnapthalene 2.0 nd nd nd 102% 98% 1-4-Chloro-3-methylphenol 10.0 nd nd nd 10-2-Methylnapthalene 2.0 nd nd nd 10-2-Methylnapthalene 2.0 nd nd nd 1-2-Methylnapthalene 2.0 nd nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2-4,5-Trichlorophenol 10.0 nd nd nd 2-4,5-Trichlorophenol 10.0 nd nd nd 2-4,5-Trichlorophenol 10.0 nd nd nd 3-1-Dinitrobenzene 10.0 nd nd nd nd 3-1-Dinitrobenzene 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          | nd .     |          |          |     |
| Sophorone   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , <del>,</del>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd       |          | ńd       |          |          |     |
| 2-Nitrophenol 10.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd.      |          | nd       |          | •        |     |
| 4-Nitrophenol 10.0 nd nd 2,4-Dimethylphenol 2.0 nd nd nd Bisis (2-chloroethoxy) methane 2.0 nd nd nd 2,4-Dichlorophenol 10.0 nd nd nd 1,2,4-Trichlorobenzene 2.0 nd nd 10.0 nd  | ·                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd       |          | nd       |          |          |     |
| 2,4-Dimethylphenol. Bis (2-chloroethoxy) methane 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          | nd       |          |          |     |
| Bis (2-chloroethoxy) methane 2.0 nd nd 2,4-Dichlorophenol 10.0 nd nd 1,2,4-Trichlorophenol 10.0 nd nd 1,2,4-Trichlorobenzene 2.0 nd nd Naphthalene 2.0 nd nd 4-Chloroaniline 10.0 nd nd 4-Chloro-3-methylphenol 10.0 nd nd 4-Chloro-3-methylphenol 10.0 nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd 104 1-Methylnapthalene 1-Methyln | •                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd .     |          | nd _     |          |          |     |
| 2,4-Dichlorophenol       10.0       nd       nd         1,2,4-Trichlorobenzene       2.0       nd       nd         Naphthalene       2.0       nd       nd         4-Chloroaniline       10.0       nd       nd         4-Chloro-3-methylphenol       10.0       nd       nd         4-Chloro-3-methylphenol       10.0       nd       nd         1-Methylnapthalene       2.0       nd       nd         2-A,6-Trichlorophenol       10.0       nd       nd         2-A,6-Trichlorophenol       10.0       nd       nd         2-Nitroaniline       10.0       nd       nd         2-Nitroaniline       10.0       nd       nd         10-Nitroaniline       10.0       nd       nd         10-Dinitrobenzene       10.0       nd       nd         10-Dinitrobenzene       2.0       nd       nd         10-Dinitrobenzene       2.0       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          | nd       |          |          | •   |
| 1,2,4-Trichlorobenzene 2.0 nd nd nd 4-Chloroaniline 10.0 nd nd nd 4-Chloroaniline 10.0 nd nd nd 4-Chloroaniline 10.0 nd nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd nd 1-Methylnapthalene 2.0 nd nd nd 1-Methylnapthalene 2.0 nd nd nd 10-Chlorophenol 10.0 nd nd nd 10-Chlorophenol 10.0 nd nd nd 10-Chlorophenol 10.0 nd nd nd 10-Chloronaphthalene 2.0 nd nd nd 10-Chloronaphthalene 10.0 nd nd nd 10-Chloronaphthalene 10.0 nd nd nd 10-Chlorophenol 10.0 nd nd nd 10-Chlorophenol 10.0 nd 10-Chlo |                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          | nd       |          |          |     |
| Naphthalene 2.0 nd nd nd 4-Chloroaniline 10.0 nd nd nd 4-Chloroaniline 10.0 nd nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd nd 104 nd 104 nd 105 nd | •                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          | nd       |          |          |     |
| Naphthalene         2.0         nd         nd           4-Chloroaniline         10.0         nd         nd           Hexachlorobutadiene         2.0         nd         96%         nd         102%         98%           4-Chloro-3-methylphenol         10.0         nd         nd         nd         102%         98%           4-Chlory-Mapthalene         2.0         nd         nd         nd         102%         98%           1-Methylnapthalene         2.0         nd         nd         nd         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,4-Trichlorobenzene                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          | nd       |          |          |     |
| Hexachlorobutadiene 2.0 nd 96% nd 102% 98% 4-Chloro-3-methylphenol 10.0 nd nd nd 2-Methylnapthalene 2.0 nd nd nd 1-Methylnapthalene 2.0 nd nd nd 2-4,46-Trichlorophenol 10.0 nd nd 2-4,45-Trichlorophenol 10.0 nd nd 2-4,5-Trichlorophenol 10.0 nd nd 2-4,5-Trichlorophenol 10.0 nd nd 2-4,5-Trichlorophenol 10.0 nd nd 2-4,5-Trichlorophenol 10.0 nd nd 2-4-Dinitrobenzene 10.0 nd nd nd 2-5-Dinitrobenzene 10.0 nd nd nd nd 2-5-Dinitrobenzene 2.0 nd nd nd nd 2-5-Dinitrobenzene 2.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          |          |          |          |     |
| 4-Chloro-3-methylphenol 10.0 nd nd nd nd 2-Methylnapthalene 2.0 nd nd nd nd 1-Methylnapthalene 2.0 nd nd nd nd 2-4,46-Trichlorophenol 10.0 nd nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2-Chloronaphthalene 2.0 nd nd nd 2-Chloronaphthalene 10.0 nd nd nd 2-Chloronaphthalene 10.0 nd nd nd 2-Nitroaniline 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I-Chloroaniline                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          | nd       |          |          |     |
| 4-Chloro-3-methylphenol 10.0 nd nd nd 2-Methylnapthalene 2.0 nd nd nd 1-Methylnapthalene 2.0 nd nd nd 1-Methylnapthalene 2.0 nd nd nd 2.4,6-Trichlorophenol 10.0 nd nd nd 2.4,5-Trichlorophenol 10.0 nd nd nd 2.4,5-Trichlorophenol 10.0 nd nd nd 2.4,5-Trichlorophenol 10.0 nd nd nd 2.4-Dinitrobenzene 10.0 nd nd nd 2.5-Dinitrobenzene 10.0 nd nd nd 2.5-Dinitrobenzene 2.0 nd nd nd 2.5-Dinitrobenzene 2.0 nd nd nd 100% 96% 1-Nitroaniline 10.0 nd nd nd 100% 96% 1-Nitroaniline 10.0 nd nd nd 3.5,6-Tetrachlorophenol 2.0 nd nd nd 3.5,6-Tetrachlorophenol 2.0 nd nd nd nd 3.5,5-Tetrachlorophenol 2.0 nd nd nd Nd Northead 10.0 nd nd Nd Northead 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dexachlorobutadiene                     | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd`      | 96%      | nd       | 102%     | 98%      | 4%  |
| 1-Methylnapthalene 2.0 nd nd nd 2,4,6-Trichlorophenol 10.0 nd nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2,5-Dilitroaniline 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l-Chloro-3-methylphenol                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          | nd       |          |          |     |
| 1-Methylnapthalene 2.0 nd nd nd 2,4,6-Trichlorophenol 10.0 nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2,4,5-Trichlorophenol 10.0 nd nd nd 2-Chloronaphthalene 2.0 nd nd nd 2-Chloronaphthalene 2.0 nd nd nd nd 2-Nitroaniline 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -Methylnapthalene                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          | nd       |          |          |     |
| New appendix of the state of    | -Methylnapthalene                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          |          |          |          |     |
| 2,4,6-Trichlorophenol 10.0 nd nd nd nd 2,4,5-Trichlorophenol 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lexachlorocyclopentadiene               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          | nd       |          |          | •   |
| 2,4,5-Trichlorophenol 10.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .,4,6-Trichlorophenol                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          |          |          |          |     |
| 2-Chloronaphthalene 2.0 nd nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,4,5-Trichlorophenol                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          |          |          |          |     |
| 2-Nitroaniline   10.0   nd   nd   nd   nd   nd   nd   nd   n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -Chloronaphthalene                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd       |          |          |          |          |     |
| ,4-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -Nitroaniline                           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd       |          |          |          |          |     |
| Dimethylphthalate         2.0         nd         nd           Acenaphthylene         0.2         nd         nd           ,3-Dinotrobenzene         10.0         nd         nd           ,6-Dinitrotoluene         2.0         nd         nd           ,2-Dinitrobenzene         2.0         nd         nd           cenaphthene         0.2         nd         95%         nd         100%         96%           -Nitroaniline         10.0         nd         nd </td <td>,4-Dinitrobenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,4-Dinitrobenzene                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| Accenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imethylphthalate                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| ,3-Dinotrobenzene       10.0       nd       nd         ,6-Dinitrotoluene       2.0       nd       nd         ,2-Dinitrobenzene       2.0       nd       nd         ,cenaphthene       0.2       nd       95%       nd       100%       96%         -Nitroaniline       10.0       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 2.6-Dinitrotoluene 2.0 nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,3-Dinotrobenzene                       | The second secon |          |          |          |          |          |     |
| ,2-Dinitrobenzene       2.0       nd       nd         ,0-Dinitrobenzene       0.2       nd       95%       nd       100%       96%         -Nitroaniline       10.0       nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| Accenaphthene   0.2   nd   95%   nd   100%   96%    -Nitroaniline   10.0   nd   nd    -Dibenzofuran   2.0   nd   nd    -A-Dinitrotoluene   2.0   nd   nd    -A-Dinitrophenol   2.0   nd   nd    -A-DINITROP   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| -Nitroaniline 10.0 nd nd Dibenzofuran 2.0 nd nd ,4-Dinitrotoluene 2.0 nd nd ,3,4,6-Tetrachlorophenol 2.0 nd nd ,3,5,6-Tetrachlorophenol 2.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 05%      |          | 1000/    | 069/     | 40/ |
| Dibenzofuran   2.0   nd   nd   nd   nd   nd   nd   nd   n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3378     |          | 10076    | 3070     | 4%  |
| ,4-Dinitrotoluene 2.0 nd nd ,3,4,6-Tetrachlorophenol 2.0 nd nd ,3,5,6-Tetrachlorophenol 2.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| ,3,4,6-Tetrachlorophenol 2.0 nd nd nd ,3,5,6-Tetrachlorophenol 2.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |          |          |          |          |     |
| ,3,5,6-Tetrachlorophenol 2.0 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 4 Dinibrank and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| 10.0 NO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |          |     |
| luorene 0.2 nd nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          | •        |     |

ESN Job Number:

S51017-2

Client:

WA. DEPT. OF FISH AND WILDLIFE

Client Job Name:

BIG GREEN LAKE REHABILITATION

Analytical Results

| 8270, μg/L                   |           | MTH BLK  | LCS      | 1        | MS       | MSD      | RPD |
|------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted               | Reporting | 10/17/05 |          | 10/17/05 | 10/17/05 | 10/17/05 |     |
| Date analyzed                | Limits    | 10/17/05 | 10/17/05 | 10/17/05 | 10/17/05 | 10/17/05 |     |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |          |     |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |          |     |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          |          |     |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       |          |          |     |
| N-nitrosodiphenylamine       | 2.0       | nd       | 92%      | · nd     | 97%      | 90%      | 7%  |
| Azobenzene                   | 2.0       | nd       |          | nd       |          |          |     |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |          |     |
| Pentachlorophenol            | 10.0      | nd       |          | nd       |          |          |     |
| Phenanthrene                 | 0.2       | nd       |          | nd       |          |          |     |
| Anthracene                   | 0.2       | nd       |          | nd       |          |          |     |
| Carbazole                    | 2.0       | nd       |          | nd       |          | -        |     |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |          |     |
| Fluoranthene                 | 0.2       | nd       | 94%      | nd       | 107%     | 101%     | 6%  |
| Pyrene                       | 0.2       | nd       |          | nd       |          | •        |     |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       | •        |          | ,   |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       |          |          |     |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |          |     |
| Chrysene                     | 0.2       | nd       |          | nd       |          |          |     |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |          |     |
| Di-n-octyl phthalate         | 2.0       | nd       | 104%     | nd       | 107%     | 101%     | 6%  |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(a)pyrene               | 0.2       | nd       | 83%      | · nd     | 97%      | 92%      | 5%  |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |          |     |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |          |     |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       |          |          |     |
| Surrogate recoveries         |           |          |          |          |          |          |     |
| Nitrobenzene-d5              |           | 46%      | 97%      | 36%      | 51%      | 59%      |     |
| 2-Fluorobiphenyl             |           | 103%     | 99%      | 103%     | 99%      | 101%     |     |
| 4-Terphenyl-d14              |           | 109%     | 100%     | 107%     | 106%     | 110%     |     |

#### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: Nitrobenzene - d5: 20-120 % 2-Flurobiphenyl: 50-150% p-Terphenyl-d14: 50-150% Acceptable RPD limit: 35% 55011 D

CHAIN-OF-CUSTODY RECORD

| CLIENT: 12 1/5/11/11        | to 1/427 ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1111                                        | M. / Wildh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lc.                                            | <u>ب</u><br>ا                | ATE:                                      | DATE: 10-13    | - 0)            | PAGE           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF          |                                   | -                                    |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|-------------------------------------------|----------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|--------------------------------------|
| ADDRESS: $\sqrt{c}$         | 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Omnik Len.                                  | 1011. 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                              | <u></u>                      | ROJE                                      | CT NA          | ΛΕ: - //        | Green          | PROJECT NAME: By Green Later Holads 14 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dude 1      | 4.4                               |                                      |
| PHONE: 504- 576-            | 526-7341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \<br>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | FAX: 52 17- 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 73 40                                        |                              | LOCATION:                                 | )<br>NO<br>NO  | By Green        | ren Luke       | OHIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Omste Hera- | ÷                                 |                                      |
| CLIENT PROJECT #:           | - The second sec | PROJEC                                      | PROJECT MANAGER: $\sqrt{\lambda} \frac{1}{k} \int_{\mathbb{R}} \frac{1}{k} \int_{\mathbb{R}}$ | 13.4 July 1                                    | 11                           | SOLLE                                     | COLLECTOR      | 12.4            | By by July ble |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE 0      | DATE OF 18-65<br>COLLECTION 18-65 | 3-01                                 |
| Sample Number Depth         | Sample<br>Пте Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Container Type                              | Q 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 2/5/100 100 100 100 100 100 100 100 100 100 | 6,000                        | 1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 188 18.        | Principal sales | Rugi           | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1edmuh latoT                      | of Containers Laboratory Hote Mumber |
| , , ,                       | 1.7% ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             | 3966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | :                            |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| (6 ''                       | 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| ., ''                       | יולינ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                | •               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                | -               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| 10.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| 12.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| 13.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| 14.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                | and the second s |             |                                   |                                      |
| 15.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           | 1              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | +                                 |                                      |
| 16.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           | +              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| 17. 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           | 1              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -                                 |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| RELINQUISHED BY (Signature) | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | RECEIVED BY (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAIE/TIME                                      |                              | SAMP                                      | SAMPLE RECEIPT | PT              | AR<br>A        | LABORATORY NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TES:        |                                   |                                      |
| 110.11.                     | 027. 01. 11 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | `.                                          | (元)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | TOTAL NUMBER OF CONTAINERS   | MBER                                      | F CONTA        | INERS           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| RELINQUISHED BY (Signature) | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RECEIM                                      | RECEIVED BY (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE/TIME                                      | CHAIN OF CUSTODY SEALS YAWNA | custo                                     | DY SEAL        | YMMA            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | SEALS INTACT? YANNA          | TACT? Y                                   | INNA           |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| AS.                         | SAMPLE DISPOSAL INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL INSTRUCT                                 | NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                | RECEIVED GOOD COND,/COLD     | 00000                                     | COND./C        | OLD             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |
| D ESN DISPOSAL              | SPOSAL @ \$2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$2.00 each   Rel                           | Return   Pickup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | NOTES:                       |                                           |                |                 | <u></u>        | Turn Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 24 HR     | 48 HR                             | 5 DAY                                |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                              |                                           |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                   |                                      |

### INVOICE TERMS: NET 30 DAYS



CCI ANALYTICAL LABORATORIES, INC.

8620 HOLLY DRIVE, SUITE 100 EVERETT, WASHINGTON 98208 425-356-2600 FAX 425-356-2626 Invoice Number:

25852

Invoice Date:

Dec 2, 2005

CCI Job Number:

511083&084

**Customer PO:** 

Sold To:

JIM UEHARA WA DEPT. OF FISH & WILDLIFE

MS: 43200 NRB

600 CAPITOL WAY NORTH OLYMPIA, WA 98501

Client Project ID:

**BIG GREEN LAKE & SPECTACLE LAKE** 

| uantity | Test Code |                      | Unit Price | Amount |
|---------|-----------|----------------------|------------|--------|
| 2       | 8021      | BTEXM BY EPA-8021    | 70.00      | 140.00 |
| 2       | PAH       | PAH'S BY EPA-8270SIM | 170.00     | 340.00 |
|         |           |                      |            |        |
| ٠       |           |                      |            |        |
|         |           |                      |            |        |
|         |           |                      |            |        |
|         |           |                      |            |        |
|         |           |                      |            | •      |
|         |           |                      |            |        |

**Total Invoice Amount** 

480.00



#### CERTIFICATE OF ANALYSIS

CLIENT: WA DEPT. OF FISH & WILDLIFE

PO BOX 753 OMAK, WA 98841 DATE: CCIL JOB #: 12/2/2005

CCIL SAMPLE #:

0511084

DATE RECEIVED:

-01 11/21/2005

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: BOB JATEFF

CLIENT PROJECT ID: CLIENT SAMPLE ID:

BIG GREEN LAKE REHAB 1 - 3 GREEN 11/18/2005 12:00

#### DATA RESULTS

| ANALYTE                | METHOD       | RESULTS*  | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|------------------------|--------------|-----------|---------|------------------|----------------|
| Benzene                | EPA-8021     | ND(<1)    | UG/L    | 11/21/2005       | LAP            |
| Toluene                | EPA-8021     | ND(<1)    | UG/L    | 11/21/2005       | LAP            |
| Ethylbenzene           | EPA-8021     | ND(<1)    | UG/L    | 11/21/2005       | LAP            |
| Xylenes                | EPA-8021     | ND(<3)    | UG/L    | 11/21/2005       | LAP            |
| Naphthalene            | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| 1-Methylnaphthalene    | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| 2-Methylnaphthalene    | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Acenaphthylene         | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Acenaphthene           | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Fluorene               | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Phenanthrene           | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Anthracene             | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Fluoranthene           | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Pyrene                 | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Benzo[A]Anthracene     | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Chrysene               | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Benzo[B]Fluoranthene   | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Benzo[K]Fluoranthene   | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Benzo(A)Pyrene         | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Indeno[1,2,3-Cd]Pyrene | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Dibenz[A,H]Anthracene  | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |
| Benzo[G,H,I]Perylene   | EPA-8270 SIM | ND(<0.02) | UG/L    | 11/29/2005       | CCN            |

<sup>\*\*</sup>ND\* INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

APPROVED BY:

Page 1

<sup>&</sup>quot; UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS



#### CERTIFICATE OF ANALYSIS

CLIENT: WA DEPT. OF FISH & WILDLIFE

PO BOX 753

OMAK, WA 98841

DATE: 12/2/2005

CCIL JOB #: 0511084

**DATE RECEIVED: 11/21/2005** 

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: BOB JATEFF

CLIENT PROJECT ID:

**BIG GREEN LAKE REHAB** 

#### SURROGATE RECOVERY

CCIL SAMPLE ID

METHOD

SUR ID

% RECV

0511084-01 0511084-01

EPA-8021 EPA-8270 SIM

TFT Terphenyl-d14 105 107.

APPROVED BY:

FAX 425 356-2626

#### POST TREATMENT DISCHARGE MONITORING REPORT

1. Lake Name: Spectacle

2. County: Okanogan

3. Section: 2-4-9-10-11 Township: 38N Range: 26E

4. **Date(s) of Treatment:** Oct 17-20, 2005

- 5. Purpose of Treatment: Spectacle Lake is located near the town of Loomis, Washington and is one of the most important production trout lakes in Okanogan County. Spectacle Lake is managed as a standard gear fishery with an Apr 1 Sept 30 open season. The recent illegal introduction of brown bullhead and other spiny ray fishes to the lake had severely compromised the trout fishery. The presence of the bullheads, bluegills, and bass created a competitive environment, so that fingerling trout plants had little or no chance of survival to yearlings. The only remaining means to restore the lake to trout only production was to chemically remove the invasive species populations and replant with rainbow and brown trout juveniles.
- 6. Name of Licensed Applicator: Jeff Korth
- 7. Lake Description: Surface Acres: 307 Volume: 8,505 Acre Feet:

Maximum Depth: 61 Average Depth: 28

8. Stream Description: Width: N/A, Length: N/A

Flow Rate of Stream/Outlet (cu. ft. per sec.): N/A

Volume and Weight of Water Treated (gallons, pounds): 23,127,884,000 lbs.

- 9. Name of Fish Toxicant Product Used: Rotenone Fish Toxicant Powder, Prenfish Fish Toxicant Liquid
- **10. Description of Treatment Method(s):** Powder and liquid both applied by pumper boats, which mixes chemical with water prior to broadcasting into lake
- 11. Quantity of Fish Toxicant used (pounds and/or gallons): 46,255 lbs of powder and 38 gals of liquid
- **12.** Concentration of rotenone in formulated Rotenone product: 7.5% in powder and 5.0% in liquid
- 13. Concentration of active rotenone in water (ppm): 3.0 ppm

14. Water conditions/quality: Water sampling done within 24hrs pre-treatment:

| Depth (m) | Temperature © | pН   | DO   |
|-----------|---------------|------|------|
| 0.3       | 12.66         | 8.12 | 9.12 |
| 2.8       | 12.39         | 8.15 | 9.09 |
| 4.5       | 12.32         | 8.13 | 8.83 |
| 6.8       | 12.26         | 8.11 | 8.64 |
| 7.0       | 12.11         | 7.78 | 6.86 |
| 8.0       | 11.78         | 7.52 | 4.64 |
| 9.0       | 10.21         | 7.40 | 1.55 |
| 10.1      | 7.93          | 7.28 | 1.38 |
| 12.2      | 6.42          | 7.20 | 1.37 |

- 15. Detoxification of rotenone treated water (if required): Description of detoxification methods/equipment; potassium permanganate application rate (pounds per hour); flow rate of stream/outlet (cu. ft. per sec.); estimate of average concentration (ppm): N/A
- 16. Description of lake inlets(s)/outlet(s) and any temporary water control measures (if required): A portion of the inlet (Toats Coulee irrigation pipeline) was treated with liquid rotenone, which then flowed into Spectacle Lake. Outlet water was turned off prior to treatment by Whitestone Irrigation District.
- 17. Period of Toxicity (duration of water quality reduction): 4-6weeks
- 18. Eradicated fish species: brown bullheads, bluegills, pumpkinseed sunfish, largemouth and smallmouth bass, and rainbow trout
- 19. Results of pre and post treatment monitoring: Prior to the treatment, the lake was sampled for various parameters including temperature, pH, and zooplankton. Post sampling included VOC and Semi-VOC both within 24 hours of treatment and 4 weeks post-treatment.
- 20. Impact on non-target organisms: None observed
- 21. Brief description of treatment/detoxification and other comments: The treatment began at 0900 on May 17, 2005 and was completed by the afternoon on May 20. Treatment consisted of 1.0 ppm each day until 3 ppm was achieved in the lake. Liquid rotenone was used in all shallow water areas and in the inlet stream. The weather was mild with some rain and wind, which aided in mixing. Even though the lake had not turned over yet, the higher dosage produced good results. Brown bullheads began surfacing the first day, but were still breathing due to the lower treatment dosage. By the end of the second and third days, thousands of brown bullheads, sunfish, and bluegill, along with hundreds of bass were lining the shoreline indicating a good kill rate. There were very few carryover trout from the

previous year's plant indicating the necessity of the chemical treatment to remove the invasive species and allow a fingerling trout plant to survive to catchable size. A bioassay with 5 rainbow trout was conducted at 6 weeks and all fish survived, indicating that the lake had detoxified. During Apr-May of 2006, 32,000 catchable and 150,000 fingerling rainbow will be planted as well as 3,000 brown trout.

- 22. Copy of the amended FSEIS for lakes/streams treated during the reporting period including all SEPA comments, results and decisions
- 23. List of lakes/streams proposed for treatment during the upcoming year.

# **ESN NORTHWEST**

### INVOICE

ESN Northwest

Tax ID #91-1510006

Phone: (360) 459-4670; Fax: (360) 459-3432

INVOICE # S51026-2 INVOICE DATE October 31, 2005

**CLIENT JOB#** 

**BILL TO:** 

WA Dept. of Fish & Wildlife

600 Capitol Way North Olympia, WA 98501

ATTN:

Jim Uehara

(Bob Jateff, Project Manager)

PROJECT:

Spectacle Lake Rehabilitation

Washington

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QUANTITY | DESCRIPTION                  |   | UNIT COST            | TOTAL              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|---|----------------------|--------------------|
| 10/31<br>10/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.       | 8260 - water<br>8270 - water |   | \$110.00<br>\$270.00 | \$110.0<br>\$270.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                              |   |                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                              |   |                      |                    |
| and the second s |          |                              | • |                      |                    |

TERMS: NET 30 DAYS

PLEASE SEND REMITTANCE TO THE ADDRESS BELOW

ESN Northwest 1210 Eastside Street SE, Suite 200 Olympia, WA 98501

ESN Job Number: Client; Client Job Name:

S51026-2 WDFW SPECTACLE LAKE REHABILITATION

| Analytical Results                        |            |          |          |          |          |          |     |
|-------------------------------------------|------------|----------|----------|----------|----------|----------|-----|
| 8260, µg/L                                |            | MTH BLK  | LCS      | WDWF 6"  | MS       | MSD      | RPD |
| Matrix                                    | Water      | Water    | Water    | Water    | Water    | Water    |     |
| Data analysis                             | Reporting  | 15/01/05 | 40/01/05 |          |          |          |     |
| Date analyzed                             | Limits     | 10/31/05 | 10/31/05 | 10/31/05 | 10/31/05 | 10/31/05 |     |
| Dichlorodifluoromethane                   | 1.0        | nd       |          | nd       |          |          | •   |
| Chloromethane                             | 1.0        | nd       |          | nd       |          |          |     |
| Vinyl chloride                            | 0,2        | nd       |          | nd       |          |          |     |
| Bromomethane                              | 1.0        | nd       |          | nd       |          |          |     |
| Chloroethane                              | 1.0        | nd       |          | nd       |          |          |     |
| Trichlorofluoromethane                    | 1.0        | nd       |          | nd       |          |          |     |
| Acetone                                   | 10.0       | nd       |          | nd       |          |          |     |
| 1,1-Dichloroethene                        | 1.0        | nd       | 83%      | nd       | 102%     | 97%      | 5%  |
| Methylene chloride                        | 10.0       | nd       |          | nd       |          |          |     |
| Methyl-t-butyl ether (MTBE)               | 1.0        | nd       |          | nd       |          |          |     |
| trans-1,2-Dichloroethene                  | 1.0        | nđ       |          | nd       |          |          |     |
| 1,1-Dichloroethane                        | 1.0        | nd       |          | nd       |          |          |     |
| 2-Butanone (MEK)                          | 10.0       | nd       |          | nd       |          |          |     |
| cis-1,2-Dichloroethene                    | 1.0        | nd       |          | nd       |          |          |     |
| 2,2-Dichloropropane                       | 1.0        | nd       |          | nd       |          |          |     |
| Chloroform                                | 1.0        | nd       |          | nd       |          |          |     |
| Bromochloromethane                        | 1.0        | nd       |          | nd       |          |          |     |
| 1,1,1-Trichloroethane                     | 1.0        | nd       |          | nd       |          |          |     |
| 1,2-Dichloroethane                        | 1.0        | nd       |          | nd       |          |          | •   |
| 1,1-Dichloropropene                       | 1.0        | nd       |          | nd       |          |          |     |
| Carbon tetrachloride                      | 1.0.       | nd       |          | nd       |          |          |     |
| Benzene                                   | 1.0        | nd       | 98%      | nd       | 121%     | 115%     | 5%  |
| Trichloroethene (TCE)                     | 1.0        | nd       | 91%      | nd       | 109%     | 104%     | 5%  |
| 1,2-Dichloropropane                       | 1.0        | nd       |          | nd       |          |          |     |
| Dibromomethane                            | 1.0        | nd       |          | nd       |          |          |     |
| Bromodichloromethane 4-Methyl-2-pentanone | 1.0        | nd       |          | nd       |          |          |     |
| cis-1,3-Dichloropropene                   | 1.0<br>1.0 | nd       |          | nd<br>   |          |          |     |
| Toluene                                   | 1.0        | nd<br>nd | 100%     | nd       | 40007    | 4400/    | 004 |
| trans-1,3-Dichloropropene                 | 1,0        | nd       | 10076    | nd<br>nd | 123%     | 116%     | 6%  |
| 1,1,2-Trichloroethane                     | 1.0        | nd       |          | nd       |          |          |     |
| 2-Hexanone                                | 1.0        | nd       |          | nd       |          |          |     |
| 1,3-Dichloropropane                       | 1.0        | nd       |          | nd       |          |          |     |
| Dibromochloromethane                      | 1.0        | nd       |          | nd       |          |          |     |
| Tetrachloroethene (PCE)                   | 1.0        | nd       |          | nd       |          |          |     |
| 1,2-Dibromoethane (EDB)(*)                | 0.10       | nd       |          | nd       |          |          |     |
| Chlorobenzene                             | 1.0        | nd       | 96%      | nd       | 119%     | 113%     | 5%  |
| 1,1,1,2-Tetrachloroethane                 | 1.0        | nd       | 00,0     | nd       | 11070    | 11070    | 370 |
| Ethylbenzene                              | 1.0        | nd       |          | nd       |          |          |     |
| Xylenes                                   | 1.0        | nd       |          | nd       |          |          |     |
| Styrene                                   | 1.0        | nd       |          | nd       |          |          |     |
| Bromoform                                 | 1.0        | nd       |          | nd       |          |          |     |
| 1,1,2,2-Tetrachloroethane                 | 1.0        | nd       |          | nd       |          |          |     |
| Isopropylbenzene                          | 1.0        | nd       |          | nd       | •        |          |     |
| 1,2,3-Trichloropropane                    | 1.0        | nd       |          | nd       |          |          |     |
| Bromobenzene                              | 1.0        | nd       |          | nd       |          |          |     |
| n-Propylbenzene                           | 1.0        | nd       |          | nd       |          |          |     |
| 2-Chlorotoluene                           | 1.0        | nd       |          | nd       |          |          |     |
| 4-Chlorotoluene                           | 1.0        | nd       |          | nd       |          |          |     |
| 1,3,5-Trimethylbenzene                    | 1.0        | nd       |          | nd       |          |          |     |
| ert-Butylbenzene                          | 1.0        | nd       |          | nd       |          |          |     |
| 1,2,4-Trimethylbenzene                    | 1.0        | ŋd       |          | nd       |          |          |     |
| sec-Butylbenzene                          | 1.0        | nd       |          | nd       |          |          |     |
| 1,3-Dichlorobenzene                       | 1.0        | nd       |          | nd       |          |          |     |
| 1,4-Dichlorobenzene                       | 1.0        | nd       |          | nd       |          |          |     |
| sopropyltoluene                           | 1.0        | nd       |          | nd       |          |          |     |
| 1,2-Dichlorobenzene                       | 1.0        | nd       |          | nd       |          |          |     |
| n-Butylbenzene                            | 1.0        | nd       |          | nd       |          |          |     |
| 1,2-Dibromo-3-Chloropropane               | 1.0        | nd       |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene                    | 1.0        | nd       |          | nd       |          |          |     |
| Naphthalene                               | 1.0        | nd       |          | nd       |          |          |     |
| lexachloro-1,3-butadiene                  | 1.0        | nđ       |          | nd       |          |          |     |
| 1,2,3-Trichlorobenzene                    | 1.0        | nd       |          | nd       |          |          |     |

<sup>\*-</sup>instrument detection limits

ESN Job Number:

S51026-2 WDFW

Client Job Name:

Client:

SPECTACLE LAKE REHABILITATION

#### Analytical Results

| 8260, μg/L            |           | MTH BLK  | LCS      | WDWF 6"  | MS       | MSD      | RPD |
|-----------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                | Water     | Water    | Water    | Water    | Water    | Water    |     |
|                       | Reporting |          |          |          |          |          |     |
| Date analyzed         | Limits    | 10/31/05 | 10/31/05 | 10/31/05 | 10/31/05 | 10/31/05 |     |
|                       |           |          |          |          |          |          |     |
| Surrogate recoveries: |           |          |          |          |          |          |     |
| Dibromofluoromethane  |           | 101%     | 105%     | 101%     | 105%     | 104%     |     |
| Toluene-d8            |           | 100%     | 102%     | 99%      | 101%     | 100%     |     |
| 4-Bromofluorobenzene  |           | 106%     | 106%     | 108%     | 107%     | 110%     |     |

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

J - estimated quantitation, below listed reporting limits

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

ESN Job Number:

S51026-2

Client:

WDFW

Client Job Name:

SPECTACLE LAKE REHABILITATION

| 8270, µg/L                    |           | MTH BLK  | LCS      | WDWF 6"  | MS       | MSD      | RPD |
|-------------------------------|-----------|----------|----------|----------|----------|----------|-----|
| Matrix                        | Water     | Water    | Water    | Water    | Water    | Water    |     |
| Date extracted                | Reporting |          |          |          |          |          |     |
| Date analyzed                 | Limits    | 10/26/05 | 10/26/05 | 10/26/05 | 10/26/05 | 10/26/05 |     |
|                               |           |          |          |          |          |          |     |
| Pyridine                      | 2.0       | nd       |          | nd       |          |          |     |
| Aniline                       | 2.0       | nd       |          | nd       |          |          |     |
| Phenol                        | 2.0       | nd       |          | nd       |          |          |     |
| 2-Chlorophenol                | 2.0       | nd       |          | nd       |          |          |     |
| Bis (2-chloroethyl) ether     | 2.0       | nd       |          | nd       | ,        |          |     |
| 1,3-Dichlorobenzene           | 2.0       | nd       |          | nd       |          |          |     |
| 1,4-Dichlorobenzene           | 2.0       | nd       | 88%      | nd       | 113%     | 111%     | 2%  |
| 1,2-Dichlorobenzene           | 2.0       | nd       |          | nd       |          |          |     |
| Benzyl alcohol                | 2.0       | nd       |          | nd       |          |          |     |
| 2-Methylphenol (o-cresol)     | 2.0       | nd       |          | nd       |          |          | -   |
| Bis (2-chloroisopropyl) ether | 10.0      | nd       |          | nd       |          |          |     |
| 3,4-Methylphenol (m,p-cresol) | 2.0       | nd       |          | nd       |          |          |     |
| Hexacholorethane              | 2.0       | nd       |          | nd       |          |          |     |
| N-Nitroso-di-n-propylamine    | 2.0       | nd       |          | nd       |          |          |     |
| Nitrobenzene                  | 2.0       | nd       |          | nd       | •        |          |     |
| Isophorone                    | 2.0       | nd       |          | nd       |          |          |     |
| 2-Nitrophenol                 | 10.0      | nd       |          | nd       | *        |          |     |
| 4-Nitrophenol                 | 10.0      | nd       |          | nd       |          |          |     |
| 2,4-Dimethylphenol            | 2.0       | nd       |          | nd       |          |          |     |
| Bis (2-chloroethoxy) methane  | 2.0       | nd       |          | nd       |          |          |     |
| 2,4-Dichlorophenol            | 10.0      | nd       |          | nd       |          |          |     |
| 1,2,4-Trichlorobenzene        | 2.0       | nd       |          | nd       |          |          |     |
| Naphthalene                   | 2.0       | nd       |          | nd       |          |          |     |
| 4-Chloroaniline               | 10.0      | nd       |          | nd       |          |          |     |
| Hexachlorobutadiene           | 2.0       | nd       | 98%      | nd       | 126%     | 122%     | 3%  |
| 4-Chloro-3-methylphenol       | 10.0      | nd       |          | nd       |          |          |     |
| 2-Methylnapthalene            | 2.0       | nd       |          | nd       |          |          |     |
| 1-Methylnapthalene            | 2.0       | nd       |          | nd       |          |          |     |
| Hexachlorocyclopentadiene     | 2.0       | nd       |          | nd       |          |          |     |
| 2,4,6-Trichlorophenol         | 10.0      | nd       |          | nd       |          |          |     |
| 2,4,5-Trichlorophenol         | 10.0      | nd       |          | nd       |          |          |     |
| 2-Chloronaphthalene           | 2.0       | nd       |          | nd       |          |          |     |
| 2-Nitroaniline                | 10.0      | nd       |          | nd       |          |          |     |
| 1,4-Dinitrobenzene            | 10.0      | nd       |          | nd       |          |          |     |
| Dimethylphthalate             | 2.0       | nd       |          | nd       |          |          |     |
| Acenaphthylene                | 0.2       | nd       |          | nd       |          |          |     |
| 1,3-Dinotrobenzene            | 10.0      | nd       |          | nd       |          |          |     |
| 2,6-Dinitrotoluene            | 2.0       | nd       |          | · nd     |          |          |     |
| 1,2-Dinitrobenzene            | 2.0       | nd       |          | nd       |          |          |     |
| Acenaphthene                  | 0.2       | nd       | 94%      | nd       | 120%     | 116%     | 3%  |
| 3-Nitroaniline                | 10.0      | nd       |          | nd       |          |          |     |
| Dibenzofuran                  | 2.0       | nd       | ,        | nd       |          |          |     |
| 2,4-Dinitrotoluene            | 2.0       | nd       |          | nd       |          |          |     |
| 2,3,4,6-Tetrachlorophenol     | 2.0       | nd       |          | nd       |          |          |     |
| 2,3,5,6-Tetrachlorophenol     | 2.0       | nd       |          | · nd     |          |          |     |
| 2,4-Dinitrophenol             | 10.0      | nd       |          | nd       |          |          |     |
| Fluorene                      | 0.2       | nd       |          | nd       |          |          |     |

ESN Job Number:

S51026-2

Client:

WDFW

Client Job Name:

SPECTACLE LAKE REHABILITATION

**Analytical Results** 

| 8270, μg/L                   |           | MTH BLK  | LCS      | WDWF 6"  | MS       | MSD      | RPD                                     |
|------------------------------|-----------|----------|----------|----------|----------|----------|-----------------------------------------|
| Matrix                       | Water     | Water    | Water    | Water    | Water    | Water    |                                         |
| Date extracted               | Reporting |          |          |          |          |          |                                         |
| Date analyzed                | Limits    | 10/26/05 | 10/26/05 | 10/26/05 | 10/26/05 | 10/26/05 | *************************************** |
| 4-Chlorophenylphenylether    | 2.0       | nd       |          | nd       |          |          |                                         |
| Diethylphthalate             | 2.0       | nd       |          | nd       |          |          |                                         |
| 4-Nitroaniline               | 10.0      | nd       |          | nd       |          |          |                                         |
| 4,6-Dinitro-2-methylphenol   | 10.0      | nd       |          | nd       |          |          |                                         |
| N-nitrosodiphenylamine       | 2.0       | nd       | 87%      | nd       | 108%     | 103%     | 5%                                      |
| Azobenzene                   | 2.0       | nd       |          | nd       |          |          |                                         |
| 4-Bromophenylphenylether     | 2.0       | nd       |          | nd       |          |          |                                         |
| Hexachlorobenzene            | 2.0       | nd       |          | nd       |          |          |                                         |
| Pentachlorophenol            | 10.0      | nd       |          | nd       |          |          |                                         |
| Phenanthrene                 | 0.2       | nd       |          | nd       |          |          |                                         |
| Anthracene                   | 0.2       | nd       |          | nd       |          |          |                                         |
| Carbazole                    | 2.0       | nd       |          | nd       |          |          |                                         |
| Di-n-butylphthalate          | 2.0       | nd       |          | nd       |          |          |                                         |
| Fluoranthene                 | 0.2       | nd       | 95%      | nd       | 121%     | 122%     | 1%                                      |
| Pyrene                       | 0.2       | nd       |          | nd       |          |          |                                         |
| Butylbenzylphthalate         | 2.0       | nd       |          | nd       |          |          |                                         |
| Bis(2-ethylhexyl) adipate    | 2.0       | nd       |          | nd       | •        |          |                                         |
| Benzo(a)anthracene           | 0.2       | nd       |          | nd       |          |          |                                         |
| Chrysene                     | 0.2       | nd       |          | . nd     |          |          |                                         |
| Bis (2-ethylhexyl) phthalate | 2.0       | nd       |          | nd       |          |          |                                         |
| Di-n-octyl phthalate         | 2.0       | nd       | 74%.     | nd       | 104%     | 99%      | 5%                                      |
| Benzo(b)fluoranthene         | 0.2       | nd       |          | nd       |          |          |                                         |
| Benzo(k)fluoranthene         | 0.2       | nd       |          | nd       |          |          |                                         |
| Benzo(a)pyrene               | 0.2       | nd       | 79%      | nd       | 116%     | 112%     | 4%                                      |
| Dibenzo(a,h)anthracene       | 0.2       | nd       |          | nd       |          |          |                                         |
| Benzo(ghi)perylene           | 0.2       | nd       |          | nd       |          |          |                                         |
| Indeno(1,2,3-cd)pyrene       | 0.2       | nd       |          | nd       |          |          |                                         |
| Surrogate recoveries         |           |          |          |          |          |          |                                         |
| Nitrobenzene-d5              |           | 47%      | 94%      | 56%      | 62%      | 63%      |                                         |
| 2-Fluorobiphenyl             |           | 128%     | 101%     | 119%     | 135%     | 129%     |                                         |
| 4-Terphenyl-d14              |           | 125%     | 95%      | 119%     | 133%     | 133%     |                                         |

### Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits:
Nitrobenzene - d5: 20-120 %
2-Flurobiphenyl: 50-150%
p-Terphenyl-d14: 50-150%
Acceptable RPD limit: 35%



CLIENT: WA DEPT. OF FISH & WILDLIFE

PO BOX 753

OMAK, WA 98841

DATE:

12/2/2005

CCIL JOB #:

0511083

CCIL SAMPLE #:

-01

DATE RECEIVED: WDOE ACCREDITATION #: 11/21/2005 C142

CLIENT CONTACT: BOB JATEFF

CLIENT PROJECT ID: CLIENT SAMPLE ID:

SPECTACLE LAKE REHAB 1 - 3 SPEC 11/18/2005 12:00

| ANALYTE      | METHOD   | RESULTS* | UNITS** | ANALYSIS .<br>DATE | ANALYSIS<br>BY |
|--------------|----------|----------|---------|--------------------|----------------|
| Benzene      | EPA-8021 | ND(<1)   | UG/L    | 11/21/2005         | LAP            |
| Toluene      | EPA-8021 | ND(<1)   | UG/L    | 11/21/2005         | LAP            |
| Ethylbenzene | EPA-8021 | ND(<1)   | UG/L    | 11/21/2005         | LAP            |
|              |          |          |         |                    |                |

| Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes | EPA-8021<br>EPA-8021<br>EPA-8021<br>EPA-8021 | ND(<1)<br>ND(<1)<br>ND(<1)<br>ND(<3) | UG/L<br>UG/L<br>UG/L<br>UG/L | 11/21/2005<br>11/21/2005<br>11/21/2005<br>11/21/2005 | LAP<br>LAP<br>LAP<br>LAP |
|-----------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------|------------------------------------------------------|--------------------------|
| Naphthalene                                   | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| 1-Methylnaphthalene                           | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| 2-Methylnaphthalene                           | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Acenaphthylene                                | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Acenaphthene                                  | EPA-8270 SIM                                 | ND(<0.02)                            | UĠ/L                         | 11/29/2005                                           | CCN                      |
| Fluorene                                      | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Phenanthrene                                  | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Anthracene                                    | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Fluoranthene                                  | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Pyrene                                        | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Benzo[A]Anthracene                            | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Chrysene                                      | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Benzo[B]Fluoranthene                          | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Benzo[K]Fluoranthene                          | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L ~                       | 11/29/2005                                           | CCN                      |
| Benzo(A)Pyrene                                | EPA-8270 SIM                                 | ND(<0.02)                            | U.G/L                        | 11/29/2005                                           | CCN                      |
| Indeno[1,2,3-Cd]Pyrene                        | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Dibenz[A,H]Anthracene                         | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |
| Benzo[G,H,I]Perylene                          | EPA-8270 SIM                                 | ND(<0.02)                            | UG/L                         | 11/29/2005                                           | CCN                      |

APPROVED BY:

Page 1

<sup>&</sup>quot; UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS



### CERTIFICATE OF ANALYSIS

CLIENT: WA DEPT. OF FISH & WILDLIFE

PO BOX 753

OMAK, WA 98841

DATE: 12/2/2005

CCIL JOB #: 0511083

**DATE RECEIVED: 11/21/2005** 

WDOE ACCREDITATION #: C142

CLIENT CONTACT: BOB JATEFF

CLIENT PROJECT ID:

SPECTACLE LAKE REHAB

### QUALITY CONTROL RESULTS

#### SURROGATE RECOVERY

CCIL SAMPLE ID

METHOD

SUR ID

% RECV

0511083-01 0511083-01

EPA-8021 EPA-8270 SIM

TFT Terphenyl-d14 110 108 .

APPROVED BY:

FAX 425 356-2626

#### POST-REHABILITATION REPORT

### **Quincy and Burke Lakes**

**LOCATION:** Grant Co.: Sec 14, 15 & 23 T19N R23E Grant Co; WDFW Quincy Wildlife Management Area about 6 miles south-southwest of Quincy, Washington.

DATE(S) TREATED: October 10-11, 2005

PURPOSE: Reduce numbers of undesirable species of fish and bullfrogs to the extent possible.

LISENCED APPLICATOR: Jeffrey W Korth

**LAKE DESCRIPTIONS:** note – the volumes of Quincy and Burke lakes had been re-calculated in 1993, resulting in a small change to Quincy Lake and a substantial change to Burke Lake. The old volumes were used in the 2005 pre-rehabilitation plans, but the error was found and the correct amount of rotenone was used in the 2005 treatment. The intended pre-rehabilitation plan target concentration of 2 ppm rotenone was accomplished in 2005.

#### 1. WATER: Quincy Lake

Surface acres: 62.5

Depth: average 10 ft; maximum 26 ft

Volume: 629.0 acre feet

Weight of Water: 1,709,437,907 lbs

Connectivity: No surface connections; subterranean flows only, unk.cfs; inlet primarily from

West Canal; outlet to Dusty Lake.

#### 2. WATER: Burke Lake

Surface acres: 70

Depth: average 15 ft; maximum 28 ft

Volume: 1,112.7 acre feet

Weight of Water: 3,024,506,010 lbs

Connectivity: No surface connections; subterranean flows only, unk. cfs; inlet primarily from

West Canal; outlet to Dusty Lake.

#### TREATMENT DESCRIPTION:

|                | Actual Rotenone used |               |         |     |  |  |
|----------------|----------------------|---------------|---------|-----|--|--|
| Water          | Date                 | lbs @ conc.   | Liquid  | ppm |  |  |
| 1. Quincy Lake | Oct 10               | 2,530 @ 6.7 % | 15 gal  | 2.0 |  |  |
| 2. Burke Lake  | Oct 10-11            | 4,455 @ 6.7 % | 15 gal. | 2.0 |  |  |

Total powdered rotenone used = 6.985 lbs @ 6.7 % and 30 gal of liquid @ 5%. All powder slurried with lake water, and liquid sprayed in shallow waters.

Detoxification Procedures: treated waters naturally detoxified.

- No detoxification was necessary; all outflow was subterranean.

#### SPECIES OF FISH ERADICATED IN ORDER OF RELATIVE ABUNDANCE:

Species; observed abundance. Water Pumpkinseed sunfish; several hundred thousand, mostly less than 2 1. Quincy Lake inches and a few thousand at 3-4 inches. Yellow perch; tens of thousands, mostly less than 3 inches and a few hundred at 8-10 inches. Largemouth bass: about one thousand, mostly less than 3 inches, fewer than 100 larger (0.5-2 lbs). Bluegill; several hundred, mostly less than 2 inches, a very few larger (1 at 8 inches). **Rainbow trout**; less than 10 at 10-12 inches, poor condition (thin). Yellow perch; several hundred thousand, mostly less than 3 inches, no 2. Burke Lake large adults observed. Brown bullheads; several hundred, mostly less than 4 inches, a very few at 8-12 inches. Rainbow; none observed.

#### PHYSICAL CHARACTERISTICS OF THE LAKE DURING TREATMENT:

Weather – Mostly sunny, 5 mph southwesterly wind, air temp = 50-70's °F.

<u>Pre-treatment water quality parameters – Quincy Lake, 10 October 2005.</u>

| Depth (m) | Water Temp | Dissolved Oxygen | pН    | Conductivity |
|-----------|------------|------------------|-------|--------------|
|           | (°C)       | (mg/l)           |       | (mu/l)       |
| surface   | 14.35      | 9.6              | 9.79  | 948          |
| 3.0       | 14.16      | 9.6              | 9.76  | 947          |
| 5.0       | 13.87      | 9.4              | 9.86  | 948          |
| 7.2       | 13.72      | 9.5              | 10.12 | 946          |

#### *Pre-treatment water quality parameters* – **Burke Lake, 10 October 2005**.

| Water Temp | Dissolved Oxygen                             | pН                                                  | Conductivity                                                  |
|------------|----------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| (°C)       | (mg/l)                                       | -                                                   | (mu/l)                                                        |
| 14.9       |                                              | 9.36                                                |                                                               |
| 14.6       |                                              | 9.30                                                |                                                               |
| 14.5       |                                              | 9.30                                                | •                                                             |
| 14.4       |                                              | 9.30                                                |                                                               |
| 14.3       |                                              | 9.20                                                |                                                               |
| 14.3       |                                              | 9.20                                                |                                                               |
|            | (°C)<br>14.9<br>14.6<br>14.5<br>14.4<br>14.3 | (°C) (mg/l)<br>14.9<br>14.6<br>14.5<br>14.4<br>14.3 | (°C) (mg/l) 14.9 9.36 14.6 9.30 14.5 9.30 14.4 9.30 14.3 9.20 |

Note – both lakes were well mixed; high pH and conductivity relative to other area waters, but par for Burke and Quincy lakes. Lowest recorded pH was 8.5 in the 1960-70's.

### PRE- AND POST- TREATMENT MONITORING:

*Impact to non-targeted organisms* – Zooplankton were sampled for diversity and abundance just previous to treatment, six months post treatment, and will again be sampled 12 months post treatment. Samples are currently being processed at Eastern Washington University.

Liquid rotenone formulation longevity – Water samples were taken at both Quincy and Burke lakes 24 hrs and four weeks post treatment. VOC (EPA methods 8310 and 502.2) testing revealed naphthalene (6.2 μg/l), 2-methylnaphthalene (19 μg/l), 1-methylnaphthalene (13 μg/l), acenaphthylene (0.03 μg/l), acenaphthene (0.25 μg/l), and flourene (0.29 μg/l) in Burke Lake water sampled 24 hours after treatment. VOC (EPA methods 8310 and 502.2) testing revealed naphthalene (1.3 μg/l), 2-methylnaphthalene (4.0 μg/l), 1-methylnaphthalene (2.1 μg/l), acenaphthene (0.04 μg/l), and flourene (0.05 μg/l) in Quincy Lake water sampled 24 hours after treatment. The amounts of 70 other compounds possibly present in liquid rotenone formulations, including benzene, tolulene, phenol, xylene, and derivatives of these compounds, were below detection limits (0.02-3.0 μg/l, variously) in these same samples. The higher amounts of detected compounds at Burke Lake were likely due to samples that were taken in the area where the empty drums formerly containing rotenone had been rinsed per the label disposal instructions. The amounts of all the aforementioned compounds were below detection limits four weeks after treatment.

**Period of Toxicity** – unknown; outside circumstances prevented bio-assay before winter conditions occurred. Probably less than four weeks based on past experience at these and other waters and given weather and lake conditions post-treatment.

### **DESCRIPTION OF TREATMENT AND OTHER COMMENTS:**

**Treatment:** A fall treatment for the 2005 treatment of Burke and Quincy Lakes was chosen because seeps and flows in the system would be at a relatively low ebb, and lake levels are low after summer evaporation. A spring rehab would have risked early spawning of the yellow perch in the system. All target species should have been finished spawning by mid October with the possible exception of the sunfish. However, centrarchid eggs hatch in a few days and would have then been susceptible to rotenone poisoning. In addition, fall treatment is mandatory if catchable-sized fish are to be used in the spring for the March 1 opening day.

The October 2005 treatment of Burke and Quincy Lakes was accomplished over a two-day period, although the treatment would have been finished in a single day but for equipment malfunctions. Both slurried powdered rotenone and liquid rotenone were used, the amount of each depending on lake volume, depth, and the physical characteristics of the littoral areas. All rotenone was hauled by truck the day of the treatment. Treatment with slurried powder was done simultaneously for both lakes. Pumper boats were used to slurry and distribute the powder over deeper areas of the lakes. One pumper boat was assigned to Quincy, and two pumper boats worked on Burke. The powdered rotenone portion of both treatments was completed the first day. Liquid rotenone was sprayed via airboat in the areas too shallow to effectively access by boat and outboard motor. A fuel pump failure on the airboat delayed its use the first day, so liquid rotenone was sprayed by airboat on Quincy the first day and Burke the second day.

Environmental conditions for rotenone treatment were very good. Water temperature was cool enough to retain a reasonable length of toxicity, and warm enough that fish were still fairly active. The lakes had turned over and were well mixed. During the liquid rotenone treatment of Burke Lake on the second day, only bullheads were still observed to be alive but stressing. No live fish were observed the second day during a thorough recon of Quincy Lake. While a near complete eradication of fish in these waters was possible, evaluation of a totally complete kill has always been hampered by the immediate and illegal introduction of new fish by anglers. However, the effectiveness of the treatment has never been in question as judged by fingerling to yearling survival evident on subsequent opening days.

Weak Links: Emergent vegetation was thick and extensive at the outlet of Burke Lake. In addition, beaver dams precluded entry so that all water could not be reached by the airboat. On the second day, above and below the road/culvert was treated by hand with a slurry of powdered and liquid rotenone. Water and rotenone leaving Burke Lake ended in a pool a short distance below the road and flow thereafter was subterranean. Had a Hydraulic Permit been requested to remove the beaver dams and clear some of the vegetation, treatment of this area could have been more thorough. It is possible that some small fish, especially bullheads, might have survived in this area. The inlet spring of Burke Lake should also receive extra attention and probably hand treatment.

Bullheads were not known in this system previous to this treatment. While their numbers were relatively small and they evaded detection, some no doubt survived because the treatment was not designed specifically to eradicated bullheads. Increasing the final concentration to 4 ppm and splitting treatment over 2-3 days would have made this a more effective project. At least 2 ppm is recommended to remove bullheads. The distribution of rotenone during any treatment is often uneven, leaving areas less toxic than supposed. With bullheads, a first treatment often stresses the fish, bringing them to the surface for a second exposure.

Cost: About 21 man-days (man-day = 8 hrs) were required to complete the rehabilitation of Burke and Quincy Lakes from pre-rehabilitation proposals to mop-up and reports (not including program planning, meetings, equipment procurement, etc common to all rehabilitations done this FY). Treatment alone required a crew of 8 and totaled 15 man-days spread over 1.5 days. Total cost of the project (rotenone, labor - \$268/day, travel, expendable equipment) was approximately \$23,000, including \$17,100 for rotenone (powder @ \$1.65/lb @ 5%, delivered; liquid @ \$55/gal).

*Epilogue:* Burke and Quincy lakes were each stocked in February 2006 with 5,000 catchable-sized rainbow trout (10-12") for the March 1 opener. These provided at least a mediocre fishery with catch rates at about a fish per hour (2.4-3.1 fish/angler). Fingerling rainbow trout stocking was delayed until May 2006 to allow zooplankton and insect populations to recover. Both waters were part of an ongoing productivity study conducted by Eastern WA University. The study seeks to evaluate and match secondary productivity with trout growth and condition. The 2007 season fingerling-based fisheries are much anticipated by anglers and biologists alike.

#### INVOICE TERMS: NET 30 DAYS



CCI ANALYTICAL LABORATORIES, INC. 8620 HOLLY DRIVE, SUITE 100 EVERETT, WASHINGTON 98208 425-356-2600 FAX 425-356-2626 Invoice Number:

25727

Invoice Date:

Nov 3, 2005

CCI Job Number:

510076

Client PO:

Sold To:

JIM UEHARA

WA DEPT. OF FISH & WILDLIFE

MS: 43200 NRB

600 CAPITOL WAY NORTH

OLYMPIA, WA 98501

Client Project ID:

**BURKE AND QUINCY LAKES 10/14** 

| Quantity | Test Code   | Description                               | Unit Price      | Amount           |
|----------|-------------|-------------------------------------------|-----------------|------------------|
| 2<br>2   | 8021<br>PAH | BTEXM BY EPA-8021<br>PAH'S BY EPA-8270SIM | 70.00<br>170.00 | 140.00<br>340.00 |
|          | :           |                                           |                 |                  |
|          |             |                                           |                 |                  |
|          |             |                                           |                 | •                |
|          |             |                                           | 7               |                  |
|          |             |                                           |                 |                  |
|          |             | •                                         |                 |                  |

**Total Invoice Amount** 

480.00



CLIENT: WA DEPT. OF FISH AND WILDLIFE

1550 ALDER ST. NW EPHRATA, WA 98837 DATE:

11/1/05

CCIL JOB #:

510076

CCIL SAMPLE #:

DATE RECEIVED: 10/18/05

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: JEFF KORTH

CLIENT PROJECT ID: CLIENT SAMPLE ID:

**BURKE AND QUINCY LAKES** 

#1-#3 BURKE LK 10/14/05 1830 (

| BENZENE  TOLUENE  EPA-8021 ND(<1) UG/L  ETHYLBENZENE  EPA-8021 ND(<1) UG/L  ETHYLBENZENE  EPA-8021 ND(<1) UG/L  ETHYLBENZENE  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<3) UG/L  NAPHTHALENE  EPA-8021 ND(<3) UG/L  I 11/1/05 CCN  1-METHYLNAPHTHALENE  EPA-8270 SIM  EPA-8270 SIM  IPUG/L  ACENAPHTHYLENE  EPA-8270 SIM  IPUG/L  III/1/05 CCN  III/1/05 CCN  ACENAPHTHYLENE  EPA-8270 SIM  IPUG/L  III/1/05 CCN  II  |                                                                                                                                                                                                                                                                                | DATA RESUL                                                                                                                                                                                                                                                                                                                                                                                       | _TS                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                        |                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| BENZENE TOLUENE EPA-8021 ND(<1) UG/L TOLUENE EPA-8021 ND(<1) UG/L ETHYLBENZENE EPA-8021 ND(<1) UG/L EPA-8021 ND(<1) UG/L EPA-8021 ND(<1) UG/L EPA-8021 ND(<1) UG/L  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<1) UG/L  EPA-8021 ND(<3) UG/L  NAPHTHALENE EPA-8021 ND(<3) UG/L  I-METHYLNAPHTHALENE EPA-8270 SIM EPA-82  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                        |                                                        |
| TOLUENE EPA-8021 ND(<1) UG/L 10/20/05 LAP EPA-8021 ND(<3) UG/L 10/20/05 LAP EPA-8021 ND(<3) UG/L 10/20/05 LAP EPA-8021 ND(<3) UG/L 11/1/05 CCN 1-METHYLNAPHTHALENE EPA-8270 SIM 13 UG/L 11/1/05 CCN 2-METHYLNAPHTHALENE EPA-8270 SIM 19 UG/L 11/1/05 CCN ACENAPHTHYLENE EPA-8270 SIM 19 UG/L 11/1/05 CCN ACENAPHTHENE EPA-8270 SIM 0.25 UG/L 11/1/05 CCN EPA-8270 SIM 0.25 UG/L 11/1/05 CCN FLUORENE EPA-8270 SIM 0.29 UG/L 11/1/05 CCN PHENANTHRENE EPA-8270 SIM ND(<0.02) UG/L 11/1/05 CCN ANTHRACENE EPA-8270 SIM ND(<0.02) UG/L 11/1/05 CCN FLUORANTHENE EPA-8270 SIM ND(<0.02) UG/L 11/1/05 CCN EPA | ANALYTE                                                                                                                                                                                                                                                                        | METHOD                                                                                                                                                                                                                                                                                                                                                                                           | RESULTS*                                                                                                                                                                                                   | UNITS**                                 |                                                                                                                                                                                                        | ANALYSIS<br>BY                                         |
| BENZO[K]FLUORANTHENE         EPA-8270 SIM         ND(<0.03)         UG/L         11/1/05         CCN           BENZO(A)PYRENE         EPA-8270 SIM         ND(<0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOLUENE ETHYLBENZENE XYLENES  NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO[A]ANTHRACENE CHRYSENE BENZO[B]FLUORANTHENE BENZO[K]FLUORANTHENE BENZO(A)PYRENE INDENO[1,2,3-CD]PYRENE | EPA-8021<br>EPA-8021<br>EPA-8021<br>EPA-8270 SIM<br>EPA-8270 SIM | ND(<1)<br>ND(<3)<br>6.2<br>13<br>19<br>0.03<br>0.25<br>0.29<br>ND(<0.02)<br>ND(<0.02)<br>ND(<0.02)<br>ND(<0.02)<br>ND(<0.02)<br>ND(<0.03)<br>ND(<0.03)<br>ND(<0.03)<br>ND(<0.03)<br>ND(<0.03)<br>ND(<0.02) | UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | 10/20/05<br>10/20/05<br>10/20/05<br>10/20/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05 | LAP LAP LAP LAP CCN CCN CCN CCN CCN CCN CCN CCN CCN CC |

<sup>\* &</sup>quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

<sup>\*\*</sup> UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS



#### CERTIFICATE OF ANALYSIS

CLIENT: WA DEPT. OF FISH AND WILDLIFE

1550 ALDER ST. NW EPHRATA, WA 98837 DATE:

11/1/05

CCIL JOB #:

510076

CCIL SAMPLE #:

· 2

DATE RECEIVED:

10/18/05

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: JEFF KORTH

CLIENT PROJECT ID:

**BURKE AND QUINCY LAKES** 

CLIENT SAMPLE ID:

#4-#6 QUINCY LK 10/14/05 1815

|                                                                                                                                                                                                                                                                                                              | LAN A MEDUL                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                         |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| ANALYTE                                                                                                                                                                                                                                                                                                      | METHOD                                                                                                                                                                                                                                                                       | RESULTS*                                                                                                                                                                                                 | UNITS**                                 | ANALYSIS<br>DATE                                                                                                                                                                                        | ANALYSIS<br>BY                                          |
| BENZENE TOLUENE ETHYLBENZENE XYLENES  NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PHENANTHRENE ANTHRACENE FLUORANTHENE PYRENE BENZO[A]ANTHRACENE CHRYSENE BENZO[B]FLUORANTHENE BENZO[K]FLUORANTHENE BENZO(A)PYRENE INDENO[1,2,3-CD]PYRENE DIBENZ[A,H]ANTHRACENE | EPA-8021<br>EPA-8021<br>EPA-8021<br>EPA-8021<br>EPA-8270 SIM<br>EPA-8270 SIM | ND(<1) ND(<1) ND(<1) ND(<3)  1.3 2.1 4.0 ND(<0.02) 0.04 0.05 ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.02) ND(<0.03) ND(<0.03) ND(<0.03) ND(<0.03) ND(<0.03) ND(<0.03) ND(<0.02) ND(<0.02) | UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L | 10/20/05<br>10/20/05<br>10/20/05<br>10/20/05<br>10/20/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05<br>11/1/05 | LAP LAP LAP LAP CON |
| BENZO[G,H,I]PERYLENE                                                                                                                                                                                                                                                                                         | EPA-8270 SIM                                                                                                                                                                                                                                                                 | ND(<0.03)<br>ND(<0.02)                                                                                                                                                                                   | UG/L<br>UG/L                            | 11/1/05<br>11/1/05                                                                                                                                                                                      | CCN<br>CCN                                              |

<sup>• &</sup>quot;ND" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES

APPROVED BY

•

<sup>\*\*</sup> UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS



CLIENT:

WA DEPT. OF FISH AND WILDLIFE

1550 ALDER ST. NW

EPHRATA, WA 98837

DATE:

11/1/05

CCIL JOB #:

510076

DATE RECEIVED:

10/18/05

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: JEFF KORTH

**CLIENT PROJECT ID:** 

**BURKE AND QUINCY LAKES** 

#### SURROGATE RECOVERY

| CCIL SAMPLE ID         | ANALYTE                  | SUR ID               | % RECV    |
|------------------------|--------------------------|----------------------|-----------|
| 510076-01<br>510076-01 | EPA-8021<br>EPA-8270 SIM | TFT<br>TERPHENYL-d14 | 106<br>66 |
| 510076-02<br>510076-02 | EPA-8021<br>EPA-8270 SIM | TFT<br>TERPHENYL-d14 | 110<br>70 |